

Delta Island Drainage Investigation Report

of the Interagency Delta Health Aspects Monitoring Program

A Summary of Observations During Consecutive Dry Year Conditions

Water Years 1987 and 1988

MWQI Copy

Photocopy and RETURN

June 1990

California Department of Water Resources Division of Local Assistance Sacramento, California

The cover photo is an aerial view of one of the many channels meandering through the Sacramento-San Joaquin Delta. The Delta is an intricate network of channels and islands encompassing 700,000 acres.

Delta Island Drainage Investigation Report

of the Interagency Delta Health Aspects Monitoring Program

A Summary of Observations During Consecutive Dry Year Conditions

Water Years 1987 and 1988

June 1990

California Department of Water Resources Division of Local Assistance Sacramento, California Organization

and and

(internal lines)

彊

1

1

State of California GEORGE DEUKMEJIAN, GOVERNOR							
The Resources Agency GORDON K. VAN VLECK, Secretary for Resources							
Department of Water Resources DAVID N. KENNEDY, Director							
Robert G. Potter, Deputy Director James U. McDaniel, Deputy Director Larry A. Mullnix, Deputy Director L. Lucinda Chipponeri, Assistant Director Susan N. Weber, Chief Counsel							
	DIVISION OF LOC Suzanne Butterfiel	AL ASSISTANCE d, Acting Chief					
	Water Resources Assessment Program Richard P. Woodard, Staff Toxicologist						
Project Superviso	r		Bruce Agee				
Staff Coordinatio	n	Wi	lliam J. McCune				
Field SamplingMichael							
	Walt Lambert Michael Atherstone Lori Weisser Dave Kemena Eric Nichol	Hallie Whitfield Barbara Heinsch Jack Bayliss Keith Healy					
Data Analysis and Report PreparationMic							
Laboratory Performance ReviewJudith Hea							
This report was prepared under contract by Marvin Juna, Water Quality							

This report was prepared under contract by Marvin Jung, Water Quality Consultant (Marvin Jung & Associates, Inc., Sacramento). Portions of the report were written by B. J. Archer, Registered Professional Engineer and Michael Sutliff, DWR Sanitary Engineer.

Acknowledgements

Suggestions to the study were made by the following six participants, who served as the Delta Islands Drainage Investigation technical advisors:

Jack Baber, Chairman, Reclamation District 1004 Mike Catino, California Central Valley Flood Control Association Thomas M. Hardesty, Manager, Reclamation District 2068 Alex Hildebrand, Trustee, Reclamation District 2075 and South Delta Water Agency Donald Kienlen, Consultant, Murray, Burns & Kienlen Engineers James Shanks, Trustee, Reclamation District 38

The views and opinions expressed in this Department of Water Resources report do not necessarily reflect those of the Delta Islands Drainage Investigation Technical Advisory Commitee participants nor are endorsed by them.

We appreciate the cooperation given to the Department by the reclamation districts and landowners for sampling drains in the Delta.

We also thank Professor Gary L. Amy, Department of Civil Engineering, University of Arizona for the use of his data and review comments.

The Technical Advisory Group of the Interagency Delta Health Aspects Monitoring Program also provided technical assistance to this study. The advisory group members included:

Keith Carns, East Bay Municipal Utility District John Coburn, State Water Contractors Andrew Florendo, Alameda County Flood Control and Water Conservation District, Zone 7 Greg Gartrell, Contra Costa Water District Isabel Gloege, Santa Clara Valley Water District Michael Lanier, Alameda County Water District Edward Means, The Metropolitan Water District of Southern California Alexis Milea, California Department of Health Services

Dan Peterson, California Department of Water Resources Michael G. Volz, California Department of Health Services

The mention of trade names or brands and laboratories used for this study does not constitute an endorsement by the State of California.

Contents

1

and and

I

1

1

1

1

and and and

]

I. SUMMARY Study D The THN Delta TH Findings Recomm	1 scription
II. STUDY DES Objectiv Project 7 Methodo Sa Fi St Sa La	CRIPTION
III. RESULTS A. Litera B. Drain 1. 2. 3. C. Drain 1. 2. 3. D. Estim 1. 2. 3.	27ture Review29age Water Quality34Pesticide Survey34TTHMFP37a. Monthly Concentrations37b. Soil Type Relationships39c. Bouldin Island - Upper Jones Tract44d. Precursor Reactivities and Characteristics46Other Parameters53age Volume601988 DIDI Survey601954-55 Drainage71a. Crop Acreage71b. Consumptive Use74c. River Flows77d. Precipitation78ating Drainage Impacts79South Delta Flow Patterns79Volume Comparisons89THM Precursor Contributions94
REFERENCES.	
APPENDICES .	

List of Figures

I

Ĩ

1

]

]

and the second s

Figure 1.	IDHAMP Monitoring Stations 5
Figure 2.	Total THM Formation Potential in the Delta, 1983-87 Maximum,
U	Minimum, Median
Figure 3.	Total THM Formation Potential at Three Agricultural Drainages,
Ų	Maximum, Minimum, Median7
Figure 4.	Shallow Water Sampler 17
Figure 5.	Irrigation Diversions
Figure 6.	Agricultural Drainage Return Points 21
Figure 7.	Deltawide Channel Survey, July 25, 1989 24
Figure 8.	Typical Delta Island Water Exchange 28
Figure 9.	Subdivision Units of the Delta 1955 30
Figure 10.	Composition and Distribution of Soils in the Sacramento-San
•	Joaquin Delta Lowlands
Figure 11.	August TTHMFP Concentrations 41
Figure 12.	January TTHMFP Concentrations 42
Figure 13.	Summer and Winter Drainage TTHMFP 43
Figure 14.	Humic Substances in Natural Waters 49
Figure 15.	EC - Chloride Relationship - Delta Channel Water 54
Figure 16.	EC - Chloride Relationship - Delta Island Drainage 55
Figure 17.	EC - TDS Relationship - Delta Channel Water
Figure 18.	EC - TDS Relationship - Delta Island Drainage 57
Figure 19.	EC - TBFP Relationship - Delta Channel Water
Figure 20.	EC - TBFP Relationship - Delta Island Drainage 59
Figure 21.	High Drainage Area, 1954-55 65
Figure 22.	Delta Selenium Distribution (µg/L), March 2, 1989
Figure 23.	Selinium in the South Delta 80
Figure 24.	Deltawide EC (µS/cm), July 25, 1989 81
Figure 25.	Deltawide TDS (mg/L), July 25, 1989 82
Figure 26.	Deltawide Alkalinity (mg/L), July 25, 1989 83
Figure 27.	Deltawide Sodium (mg/L), July 25, 1989 84
Figure 28.	Deltawide Sulfate (mg/L), July 25, 1989 85
Figure 29.	Estimated vs. Measured TTHMFP Carbon (TFPC) Values 103
Figure 30.	Time Adjusted Estimated vs. Measured TFPC 104
Figure 31.	Estimated vs. Measured Chloroform (CHCl3) Values 105

List of Tables

and the second se

(invest

1

1

Table 1.	List of Contacted Drainage Entities and Managers
Table 2.	Delta Study Units, DWR Report No. 4
Table 3.	Pesticide Monitoring Results
Table 4.	Monthly Range of TTHMFP Concentrations, 1987-88
Table 5.	Bouldin Island - Upper Jones Tract THMFP 45
Table 6.	Percent Distribution of AMW 48
Table 7.	Characteristics of Drain vs. Nondrain DOC 52
Table 8.	Estimated Pump Station Drainage Volume
Table 9.	Monthly 1954-55 Drainage Volume Estimates
Table 10.	Drainage Volume From 3 Study Areas, 1954-55
Table 11.	Drainage Rates in the Delta Lowlands, 1954-55
Table 12.	Delta Lowlands Land Use Summary
Table 13.	DWR Consumptive Use Model Estimates
Table 14.	Sacramento and San Joaquin River Flows
Table 15.	Precipitation on Delta Lowlands
Table 16.	Hydrology During Synoptic Surveys
Table 17	W.Y. 1988 Flows at DMC, Vernalis and Stockton
Table 18.	Comparisons of Drainage to River Flows
Table 19.	Volume Comparisons of Monthly River Flows, Drainage, and
	Total Exports
Table 20.	River Volumes and Estimated Island Drainage
Table 21.	Equations for Tables 22-24 95
Table 22.	River TTHMFP Carbon (TFPC)
Table 23.	Delta Drainage TTHMFP Carbon (TFPC) 97
Table 24.	Delta TTHMFP Carbon (TFPC) Concentrations from Drainage 98
Table 25.	Estimated Delta TTHMFP Carbon (TFPC) Increases from Drainage 99
Table 26.	Estimated Proportion of Drainage TFPC in Delta Waters
Table 27.	Measured TTHMFP Carbon (TFPC) at Selected Delta Stations 101
Table 28.	Comparison of Estimated Drainage THMFP Carbon (TFPC)
	Impact to Observed Data 101

I. Summary

Study Description

The Delta Island Drainage Investigation (DIDI) was established to assess the impacts of Delta island drainages on the quality of drinking water supplies taken from the Delta. The study was initiated after data from the Interagency Delta Health Aspects Monitoring Program (IDHAMP) showed high total trihalomethane formation potential (TTHMFP) in island drainages.

The Delta Islands Drainage Investigation was developed to collect information about:

- 1. What is the quality and quantity of Delta island drain water?
- 2. What processes affect the quality and quantity of island drainages?
- 3. What water quality impacts in the channels and at drinking water supply intakes are due to Delta island drainages?
- 4. How do the contributions from Delta island drainages compare with other major sources, which may include the San Francisco Bay estuary, inflows and drainages from rivers such as the San Joaquin, from Delta channels, and from weather-related events?
- 5. If the treatability and cost of treatment of Delta waters are affected, what are the alternatives for managing these impacts?

The information is intended to aid in making decisions about watershed management, discharge requirements, water quality monitoring, and water treatment requirements.

At this time, the study is continuing to address the first three questions stated above. Therefore, *only preliminary conclusions are presented*. The purpose of this report is to summarize the progress and planned direction of this study for water agencies and the general public.

The THM/DBP Problem

Water utilities are required to meet federal and state drinking water standards that have been established for the protection of human health. THMs or trihalomethanes are a class of organic compounds that are regulated. The current Maximum Contaminant Level (MCL) is 0.10 mg/L total trihalomethanes, the sum of concentrations of chloroform (CHCl₃), bromodichloromethane (CHCl₂Br), dibromochloromethane (CHClBr₂), and bromoform (CHBr₃). This MCL was not established strictly on the basis of health effects data but was set as a feasible level for compliance by water utilities. However, a much lower MCL (possibly as low as 0.025 mg/L or 0.050 mg/L) is being proposed by the U.S. Environmental Protection Agency (EPA) for human health protection and adoption by 1992.

The production of THMs and several other disinfection by-products (DBPs) can be generally shown as:

Natural	+	Free	+	Bromide ====> THMs	+	Other
Organics		Chlorine				Disinfection
(Precursors)		or other				By-products
		oxidants				

When free chlorine or other oxidants are added to drinking water as a disinfectant, the above reactions occur. Natural organic matter such as from decaying algae, soils, and organisms provide the carbon source to react with chlorine. If bromide is not present, only chloroform would be formed as the chlorine reacts with natural organic precursors. Bromide, another precursor, can exacerbate the problem of meeting the THM MCL because the heavier THM compounds containing bromine atoms, will be formed. Chlorine will oxidize bromide to hypobromous acid (HOBr), which will then react with the organic precursors to form the brominated methanes. Therefore, levels of both bromide ion and organic carbon in water supplies impact the control of DBPs.

New studies by The Metropolitan Water District of Southern California and EPA (MWDSC-EPA, 1989) on treatment options to reduce THM formation now show other DBPs of health concern are being formed. Alternative disinfecting chemicals such as ozone are being studied. However, these studies have shown that new disinfection technologies may not be adequate to meet anticipated MCLs for DBPs. Therefore, the sources of organic material and bromide in supply water are being studied to see if they can also be controlled.

The concern for meeting a THM MCL has now focused on ways of complying with proposed MCLs for a variety of DBPs. DBP regulations are scheduled for promulgation in 1992. THM formation potential can serve as a surrogate for DBP formation potential for many DBPs, although sometimes a reduction of THMs may increase other DBPs.

Data from several ongoing water studies (e.g. California Urban Water Agencies Delta Water Quality Study, MWDSC-EPA treatment research, DWR IDHAMP) including this investigation on Delta island drainage will be used to examine the most cost-effective solution for meeting new drinking water standards. The information is also needed by the State Water Resources Control Board in setting water quality objectives in the Delta to meet and protect the needs of many competing beneficial uses such as agriculture, fisheries, recreation, municipal, and industrial. The economic importance and value of each of these aforementioned beneficial uses have been presented by various parties to the State Board during the 1987-90 Bay-Delta hearings.

Delta THMFP

The Delta Islands Drainage Investigation (DIDI) began in January 1987 as an outgrowth of a Department of Water Resources study of the quality of Delta water for drinking water supplies. The study, known as the Interagency Delta Health Aspects Monitoring Program (IDHAMP), was initiated in July, 1983, in response to a 1982 scientific panel report which concluded that there were insufficient data to fully assess the present or projected quality of Delta drinking water supplies. The Panel recommended establishment of a program to monitor water quality as related to human health concerns.

Under IDHAMP, water quality at 15-18 stations is monitored each month. Samples are collected from areas representing fresh water inflow to the Delta, agricultural drainage, bay water, channels and sloughs, and water exports (Figure 1). Analyses include selected pesticides, sodium, selenium, minerals, and total trihalomethane formation potential (TTHMFP).

The THM formation potential test used in this study and in IDHAMP is used to compare the THM producing capacity of source water supplies. The test determines the maximum concentration of THMs that can be produced from any given sample. However, the concentration of THMs actually produced in drinking water systems is much lower than the THM formation potential because of pH adjustments, ammonia addition, water temperature, chlorine dosage, and other treatment practices and plant designs employed to reduce THMs.

Figure 2 shows the range of TTHMFP observed in the Delta. The Sacramento River at Mallard Island station represents the area where fresh and bay waters meet during the dry period investigated; in wet periods, freshwater can extend through Suisun Bay and even beyond Carquinez Strait. Water quality at this station typically is high in bromides and other seawater constituents because of changing tides and flows.

The Sacramento River at Greenes Landing station reflects the quality of the major source of fresh water flowing into the Delta. Water flowing into the Delta from the San Joaquin River upstream of Vernalis is a variable combination of Central Valley agricultural drainage mixed with fresh water. The monitoring station on the San Joaquin River near Vernalis station reflects these influences.

The qualities of water diverted by the Contra Costa Water District (CCWD) and SWP (State Water Project) are represented by the monitoring locations Rock Slough at Old River, and Banks Pumping Plant Headworks, respectively.

IDHAMP data from three Delta island drains suggest that peat soils can contain high concentrations of organic THM precursors, and may be a source of THM precursors. The significance of these inputs could not, however, be quantified without more information about TTHMFP concentrations in other drains, and volumes of drainage being discharged.

The range of TTHMFP at island drains located at Empire Tract, Tyler Island, and Grand Island are shown in Figure 3. The THMFP concentrations are significantly higher than that of the channel water samples shown in Figure 2.

Five years of IDHAMP data demonstrate that waters diverted by the Contra Costa Water District (CCWD), State Water Project (SWP), and Federal Central Valley Project have higher TTHMFP concentrations than fresh water flowing into the Delta from the Sacramento and American Rivers. Organic matter carried in from sea water intrusion, from the San Joaquin River, and from peat soils and vegetation in the Delta Lowlands and surrounding channels are suspected to be major contributors to the increased TTHMFP. Bromides, which are salts of sea water origin, enter the Delta from San Francisco Bay. Reductions in the amount of organic matter and bromides in untreated water supplies would enable a reduction of THMFPs and other DBPs in drinking water.

Reduction of precursor substances would increase the reliability of water treatment processes in meeting more stringent drinking water criteria, and would also minimize treatment costs.

In response to these water quality concerns, the Technical Advisory Group of IDHAMP recommended that DWR initiate an investigation of the effects of agricultural drainage on Delta water quality. DWR acted on the Group's recommendation and proceeded with developing and commencing the Delta Islands Drainage Investigation (DIDI) in January 1987. This report describes the progress and results of the investigation.

Figure 1. RDHAMP Monitoring Stations

Findings

Natural waters contain organic matter of plant and animal origin. The total amount of organic matter in water can be operationally classified into dissolved and particulate phases. Dissolved organic matter (DOM) or dissolved organic carbon (DOC) is that which passes through a 0.45 μ pore sized filter. DOM can be further classified into four major groups: (1) identifiable compounds, (2) hydrophilic acids, (3) humic acid, and (4) fulvic acid. The humic and fulvic acids are collectively refered to as humic substances. The formation of THM when humic substances in natural waters are combined with a strong oxidant such as chlorine has been extensively documented. Aquatic humic substances originate from soil humic material and terrestrial and aquatic plants.

The preliminary findings of this study show that both bromide and the types of organic matter present can affect the total THM formation potential of Delta waters.

A study of the characteristics of DOM humic and nonhumic substances showed distinct differences between drain and riverine Delta water samples (Amy et al, 1990). Drain samples when compared to river and lake water samples had a higher average molecular weight for DOM and were more propense in forming DBPs. Drainage contained heavier and larger sized humic substances (based on molecular weight measurements) than riverine Delta samples. Drainage generally had four times greater THMFP and ten or more times greater DBPs than Delta river samples.

Besides DOC, bromide will contribute to the high TTHMFP seen in various regions of the Sacramento-San Joaquin Delta. The amount of brominated methane compounds that are formed from waters of the same dissolved organic carbon (DOC) concentration will vary with bromide concentrations. This implies that bromide concentrations and the form and types of DOC material present affect TTHMFP and the distribution of brominated THMs that are formed.

The distinct characteristics of drain and nondrain organic matter indicate the potential capability to study the movement of island DOM humic substances in the Delta by tracking the molecular weight distribution of organic material in water.

The DOM or DOC characteristics (e.g. molecular weight and propensity to DBP formation) between drain and river samples are distinct enough to indicate that drainage DOC compounds are predominantly from Delta island soils and not solely the result of the concentrating effects from evapotranspiration of applied irrigation water. Historically, much of the Delta was a vast tule marsh whereby peat was formed from the decay of the marsh vegetation (the great bulrush or tule, *Scirpus lacustris*). On islands overlying peat type soils, the peat is the major source of island soil organic matter. The Delta basin soils are mostly organic soils and associated soils in which there is advanced alteration and an admixture of mineral soils.

Data collected from the Delta Islands Drainage Investigation and Interagency Delta Health Aspects Monitoring Program have shown that drain waters do have a higher potential to form trihalomethanes than Delta channel waters. These results corroborate the work reported by Amy et al. (1990).

Drainage volume discharges correspond to the seasonal farming activities on the islands. There is a summer peak of maximum drainage, typically, in July-August, that corresponds to the increased irrigation that occurs. There is also a winter peak of maximum drainage, typically observed in December-January. This winter drainage is caused by the flooding of fields by landowners to leach out salts accumulated in the soil.

In general, the highest observed range of THMFP concentrations in the island drainages during the summer and winter peak drainage months correlated with island soil type. Delta soil types can be grouped into three simple classes: mineral, intermediate organic, and peaty organic. All three soil types contain organic matter with mineral soils the least amount (less than 10%) and peaty organic the most (about 50% to 80%). The organic soils, which are confined to the Delta basin, occupy a larger aggregate acreage (about 250,000 acres) than the mineral soils, which occupy the margins of the basin. The basin organic soils are more typical of the low-lying area and the mineral soils represent a transition zone where basin organic soils begin to mix with upland mineral soils that originate from areas beyond the Delta boundaries.

The August maximum THMFP concentrations appeared to be higher on islands with the greatest amounts of peat soils and lower on islands with mineral soils. In most cases generally, the January maximum THMFP concentrations on all islands were higher than those observed in August. Higher concentrations were still observed on peat soil island drainages as compared to mineral soil island drainages.

In 1982 DWR tests showed composited Delta peat soils and mineral soil extracts had $61,000 \ \mu g/kg$ and $27,000 \ \mu g/kg$ TTHMFP, respectively. Island drainage TTHMFP is therefore most likely related to soil type and water saturation of the island soils. Organic soils are extremely permeable and have a high water-holding capacity.

There are about 2200 siphons and 260 drainage pump stations on nearly 60 islands and tracts in the Delta that were identified by DWR in 1986 and 1987. There is insufficient data to identify single islands or drainages which may be representative of large areas of the Delta.

The most comprehensive study on Delta island drainage volume was conducted by DWR in 1954-55 and published in DWR Report No. 4 (1956). Based on comparisons of past and present land use data, water year classification, and DWR's Division of Planning Consumptive Use model runs, the estimated total W.Y. 1988 drainage volume in the Delta Lowlands was between 633,195 and 773,905 acre-feet. These estimates correspond to 90 and 110% of the drainage volume estimates of the 1954-55 study.

During summers of critical water years, the volume of Delta Lowland drainage can be significant when compared to total river inflow from the Sacramento and San Joaquin rivers or the amount of Delta exports. The July 1954 drainage volume was equivalent to as much as 15% of the July 1954 combined total of Sacramento and San Joaquin river flows into the Delta.

The impact of island drainage on Delta waters will vary with location and hydrology within the Delta. The Delta Islands Drainage Investigation has been monitoring conditions during a four-year drought. Under these severe water shortage conditions, San Joaquin River (SJR) flows have been constantly low (about 1200 to 1500 cfs). DWR's State Water Project Operations and Maintenance flow data show that nearly all of the SJR flows near Vernalis were diverted to the DMC intake during W.Y. 1988. The DMC flows (pumping) were 2 to 3 times greater than the SJR flows at Vernalis. SJR water entering the Delta near Vernalis was an insignificant portion of the water flowing into the Delta past Stockton. These observations were substantiated with synoptic water quality surveys and SJR selenium monitoring that tracked the flow of SJR water to the DMC intake at Lindemann Road. Observations under other hydrologic conditions such as normal and wet years are needed as SJR flows can become a more significant portion of Delta inflow.

DOC has been observed to behave conservatively in waters of less than 5 parts per thousand salinity, the salinity range generally found in the Delta. Humic substances, the most reactive fraction of DOM in forming THMs, are very biorefractory (resistant to natural biological degradation). Carbon dating has established that humics from the Suwanee River (Florida) are 30 years old. It is the nonhumic fraction of DOM, consisting largely of biochemicals such as proteins and amino acids, which is more biodegradable. Therefore, humic substances (THM precursors) in Delta waters are not expected to decrease appreciably because of biological decay or transformation within the Delta. Also decay may not be significant in reservoirs or aqueducts if Delta humics are as biorefractory as those carbon dated from the Suwanee River.

The impact of drainage THM precursors on Delta water quality was estimated. The method converted measured TTHMFP concentrations to TTHMFP organic carbon concentrations (TFPC). These conversions were made to eliminate the bias of comparisons due to the heavier THMs that contained bromine.

A preliminary estimate of the monthly TFPC entering the Delta from river and bay inflows and Delta island drainages was made. The calculations used monthly Delta inflow data for W.Y. 1988 and the estimated monthly drainage volumes. For simplification, the preliminary impact assessment lumped together the average TFPC values of selected IDHAMP stations (Banks Headworks, Sacramento River at Mallard Island, Clifton Court Forebay intake gate, Middle River at Borden Highway) to represent the monthly water quality of the Delta. Similarly, TFPC data were averaged for mineral-intermediate organic islands versus peat islands. The monthly TFPC and river inflow and drainage discharge estimates were then used to derive monthly flow-weighted estimates of drainage plus river TFPC. These estimates were then compared against the average TFPC in the Delta.

The estimates showed that drainage contributed 40 to 45% of the TFPC in the Delta during the irrigation months (April August) and 38 to 52% during the winter leaching period (November February) during W.Y. 1988.

The calculated TFPC estimates showed good agreement with the general rise and fall of observed average values in the Delta during October 1987 June 1988. There was about a two-week lag period between the monthly average calculated estimates and

observed data. The lag period is attributed to different sampling dates, the averaging and grouping of values, and time between observing an impact in the channels caused by island drainages.

The TFPC estimates appeared to be reasonable, since the annual average, minimum, and maximum estimates were $4.5 \,\mu$ g/L of their respective observed values. Overall, the estimates averaged 14.5% higher than the observed mean values based on data from the four IDHAMP stations used to represent the average TTHMFP in the Delta.

Overall, the results were good and indicated a start in the correct approach to studying TTHMFP in the Delta. Further monitoring will improve the precision of these estimates and hasten the development of a Delta TTHMFP model by DWR.

While the information produced in this study strongly indicates islands are significant sources of organic THM precursor material, we have not completed our work in measuring the impact of these discharges on the drinking water quality of Delta supplies. Due to the variety of island acreages, soil types, and drainage volume as well as different locations and flow patterns within the Delta, it is conceivable that not all Delta islands significantly impact channel water quality. Some of our synoptic water quality surveys in the channels support that thought.

The analysis showed the need for more drainage flow and drainage water quality data to improve the precision of the study. The preliminary findings are an indicator of the relative magnitude of the potential THM precursor loadings from Delta islands. The continuation of this study over different hydrologic conditions and coverage of more island drainages will aid in determining the need and best method for setting further water quality criteria or policy in the Bay-Delta.

DIDI sampling also included monitoring of pesticides in the drainages. Thirty of 260 Delta island drainages were sampled in July 1988 for pesticide residues. July is both a peak application month of most agricultural pest control chemicals and the summer peak month for drainage discharge in the Delta. Pesticide chemicals were mostly below laboratory detection limits. Where pesticide residues were detected, they were near the detection limits, and well below current established drinking water criteria or action levels established by the California Department of Health Services. Further sampling is needed before making any conclusions about pesticide residues in the remaining 230 drains throughout the Delta.

Recommendations

The need to complete the assessment of the impacts of island drainages, San Joaquin River drainage, bay water intrusion, and other significant, potentially controllable factors on the quality of Delta drinking water supplies grows stronger because of new proposed drinking water standards.

In this program, the impact of Delta island drainage on the quality of drinking water supplies was estimated both by sampling the channels and drains. Overall, the 54 drains provided valuable data in understanding the factors that affect the quality and quantity of island drainage. Further sampling of other drainages will improve the precision of data analysis and interpretation. An expanded monitoring program will be necessary.

Study activities for 1990 will need to identify the characteristics of other Delta islands and further study the impacts of discharges to the channels.

Based on these factors, the following recommendations are made:

- The study period must include other hydrologic conditions. The study has been observing conditions during a four-year drought. The results cannot be extrapolated to other hydrologic conditions.
- 2. The monitoring program must be expanded to include a larger number of significant Delta island drains and associated channels. The assistance of the State or Regional Boards should be requested to encourage further cooperation from some districts.
- 3. Synoptic surveys must be continued and conducted more frequently, especially during these prolonged drought year conditions. These surveys provide valuable information on water quality as related to flow conditions in the Delta.
- Analytical studies to characterize drain and nondrain humic substances as conducted by Dr. Gary Amy must be continued. Such studies provide a method of "fingerprinting" the contribution of THM organic precursor material from various sources.
- 5. The sampling of channel sediments and island soils for TTHMFP and other DBP formation potential should be added to the study. Sampling should include at least two depths to conduct soil and sediment profile comparisons.
- 6. A study of the relationship of bromide to other water quality measurements and constituents should be performed.
- Develop a study to compare the raw water TTHMFP concentrations to finished water THM and DBP.
- Continue laboratory studies on the effects of holding times, incubation temperature, chlorine dosage, DOC, and bromide concentration on the DWR TTHMFP test method.
- Continue analysis of the IDHAMP and DIDI data base to examine water quality relationships and trends at individual sampling stations.
- 10. Work cooperatively with the DWR Delta Modeling Group on developing a Delta island salinity model and a Delta THMFP model. Develop and locate funding sources to implement the necessary studies for these models.

The Department will re-direct funds and resources to achieve some of these recommendations; however, since DWR resources are limited, outside resources will be sought from interested water agencies that would benefit from the study.

DWR's Division of Operations and Maintenance for the State Water Project have added TTHMFP testing to their existing monitoring of the SWP.

1

II. Study Description

Objectives

The Delta Islands Drainage Investigation was developed to address specific questions, including:

- 1. What is the quality and quantity of Delta island drainwater being discharged?
- 2. What processes affect the quality and quantity of island drainages?
- 3. What water quality impacts in the channels and at drinking water supply intakes are from Delta island drainages?
- 4. How do the contributions from Delta island drainages compare to other major sources, which may include the San Francisco Bay estuary, inflows and drainages from rivers such as the San Joaquin, from Delta channels, and from weather-related events?
- 5. If the treatability and cost of treatment of Delta waters are affected, what are the alternatives for managing these impacts?

The information generated from this study is intended to aid in making decisions about watershed management (e.g. State Board Delta Hearings) and water treatment practices.

At this time, the study is continuing to address the first three questions stated above. Therefore, only preliminary conclusions are presented. The purpose of this report is to summarize the progress and planned direction of this study for water agencies and the general public.

Project Team

The Delta Islands Drainage Investigation is directed through the Department's Division of Local Assistance, Water Resources Assessment Program. Data collection, laboratory coordination, and database management support was provided by the Water Quality Section, Operations Branch, of the Central District Office. Additional technical support and data analysis are provided under contract with the water quality consulting firm of Marvin Jung & Associates, Inc. of Sacramento.

Laboratory services were provided by the DWR Laboratory located in Bryte (West Sacramento), and our contract laboratories, ENSECO-CAL of West Sacramento (F.Y.s 87-88 and 88-89) and Pace Laboratories, Santa Rosa (F.Y. 89-90). Laboratory quality assurance evaluation was provided by each laboratory, and through interlaboratory checks conducted by the State Department of Health Services, Sanitation and Radiation Laboratory in Berkeley.

Quality assurance procedures are practiced by DWR staff during field sampling, data entry, retention, and storage. A complete description of our quality assurance

measures can be found in Appendix E of "The Delta As A Source of Drinking Water, Monitoring Results 1983-1987," published by DWR in August 1989.

Methodology

The following sections describe sampling equipment, field measurements, study sites, sampling frequency, and laboratory analyses.

Sampling Equipment

The field crew collected drain water samples at the intakes of the pump stations. Many of the scaffolding and walkways at the pump stations provided a platform for sampling.

Water samples from the Delta channels were collected with a shallow water sampler, a stainless steel pail, or a Kemmerer water sampler. Samples were taken at the 1-3 foot depth.

Most drains were too shallow to use traditional devices designed to sample deeper waters (e.g., Kemmerer sampler). Consequently, a new shallow water sampling device was designed and constructed. The sampling device was a 2-gallon stainless steel box. The sampler was designed to allow water to flow into the device but keep at a minimum the admittance of foreign matter. The handle was approximately 18 inches long, with a steel cable attached to it. Two valves, constructed of stainless steel and Teflon, were attached to the bottom of the sampling device. These valves were used to fill sample containers (Figure 4).

Field crews took samples from boats, off bridges, and pier structures that provided the best and safest access to the sampling points.

Water samples were tested for selenium, minerals, turbidity, dissolved organic carbon (DOC), color, and TTHMFP. Some channel water samples were also tested for chlorophyll. Except for turbidity and color, all samples were filtered in the field through 0.45 micron pore sized Millipore membranes, using a stainless steel filtration apparatus. Selenium samples were preserved with nitric acid. Mineral samples were filtered into a one-quart bottle and a half-pint bottle and preserved with nitric acid. Chlorophyll samples required two filters. Each filter received 200 ml. of sample water. Filters were then stored in dry ice until they were delivered to the Lab. All other samples were stored on ice during delivery.

TTHMFP samples were collected in three standard 40 ml. VOA (volatile organic analyses) vials while DOC samples were placed in amber colored 250 ml. bottles, preserved with sulfuric acid. After January 1988, TTHMFP containers remained the same while DOC samples were taken in one 40 ml. vial, preserved with hydrochloric acid.

Field Measurements

Field measurements included temperature, dissolved oxygen (DO), specific conductance (EC), and pH. Temperature and EC were taken using a Yellow Springs Instrument (YSI) Model 3000 T-L-C Electrical Conductivity meter. This meter was calibrated using two separate tests. The first test checked the meter readings against standards made at the DWR Bryte Lab. The second test required an electrical probe supplied by YSI. The probe tested the internal system of the meter with pre-programmed readings. If the meter was within a standard reading established by YSI, then the meter was in calibration. If not, it was returned to the manufacturer for re-calibration. Using both methods, the internal components of the meter and the probe were verified to be in working order. These methods were performed prior to each day's sampling run.

The Beckman Model 10 pH meter was standardized prior to each sampling trip. Commercial pH standard solutions of pH 4 and 10 were purchased from VWR Scientific and Fisher Scientific.

Dissolved Oxygen (DO) was measured with a YSI Model 50 DO meter. This meter was calibrated using a number of available calibration tests. The main method used was calibration in air in mg/L for fresh water measurements. The probe was placed in moist air and allowed to stabilize for fifteen minutes. The meter was then calibrated to the stabilized meter reading for DO. The meter was also regularly checked by using the independent Modified Winkler Method. Triplicate water samples were titrated by the Winkler method. The meter was then calibrated to the average of the 3 results. Membranes on the probes were replaced every two to three weeks, per manufacturer's recommendations.

Study Sites

This study focused on the Delta Lowlands. An extensive effort was made to locate both irrigation water intakes (siphons) and agricultural drains. Topographic maps and navigation charts were examined and field crews were sent to confirm the size and locations of the siphons and pump stations. Approximately 2,200 siphons and 260 agricultural drains were located and identified by Department staff. Documentation for each visited site was compiled for later use by field staff. Figures 5 (Irrigation Diversions) and 6 (Agricultural Drainage Return Points) show the locations of irrigation water diversions and agricultural drainages in the Delta, respectively.

It is the Department's policy to work on private lands only after receiving permission from the landowner or land manager. Therefore, letters requesting permission to sample the 260 drains and to procure power consumption records for pump stations were sent to the Reclamation Districts that managed the drains. The Department received permission to sample 54 drains on 20 of a total of 51 tracts. Table 1 (List of Contacted Drainage Entities and Managers) lists the responses received as of December 31, 1987.

The drains sampled by the Department are shown in Figure 6.

The power consumption records for the Reclamation Districts came from the Pacific Gas & Electric Company and the Sacramento Municipal Utility District (SMUD). Data were given for one year, 1987, and included pump test results on efficiency and power use for each month or every two-month period.

Figure 6. Agricultural Drainage Return Points

Table 1. List of Contacted Drainage Entities and Managers

		REQUEST FOR SAMPLING		REQUEST FOR POWER DATA	
IRACI	MANAGER	(RESPONSE)	DATE	(RESPONSE)	DATE
Bacon Isl.	RD# 2028	G	11/2/89	G	
Bishop	RD# 2042	NR			
Bouldin	RD# 756	G	3/10/87	G	7/14/87
Brack	RD# 2033	NR			
Bradford Isl.	RD# 2059	NR			
BrannAnarus	RD# 31/	INIK		NID.	
Brannan	RD# 2067	G	3/12/8/	LIK	
Byron	RD# 800	NR		6	7 10 107
Canal Ranch	RD# 2080	NR	4 /1 /07	G	7/14/07
Clinton Court	DWK	G	0/1/0/	9	//14/0/
Deadhorse Isi.	RD# 2111	INK		G	
Drexier	RD# 0004	INK	2/0/07	G	7/0/07
Egberr	KD# 2084	5	5/9/0/	G	7/9/0/
Egberr	KD# 530	9	3/1/0/	ND	1/20/01
Empire	KD# 2029	S.	3/31/6/	INK	
Fabian	RD# 1000	IVIC	8/10/07	C	0/17/07
Gianville	RD# 1002	9	0/19/0/	6	0/1//0/
Halland Tract	RD# 2000	G	10/31/80	G	
Holiana Ilaci	RD# 2025	ND	10/31/07	6	7/24/87
loreovile	DD+ 830	NID		0	1/24/01
Jersey Ist.	RD# 000	G	3/6/87	G	10/14/ 87
Kings Isi.	DD+ 694	ND	3/0/07	0	10/14/07
Lower lopers	DD# 2038	ND			
McCorm /William	PD# 2110	G	3/16/87	G	7/8/87
McDonald	DD# 2030	ND	5/10/07	0	110101
Medford Isl	PD# 2001	ND			
Moss	DD# 404	G	3/7/87	NID	
Mosedale	PD# 17	G	3/9/87	G	7/8/87
Netherlands	PD# 000	G	3/12/87	G	7/17/87
New Hope	DD# 3/8	NP	0/12/07	0	1111101
Orwood	PD# 2024	NP			
Pescadero	PD# 2095	G	3/12/87	G	8/18/87
Pescadero	RD# 2058	G	4/9/87	NR	
Pierson	RD# 551	G	3/12/87	G	7/17/87
Prospect	RD# 1667	G	3/5/87	G	7/15/87
Rindge	RD# 2037	G	3/9/87	G	7/9/87
Rio Blanco	RD# 2114	G	3/9/87	G	7/8/87
Sara -Barnhart	RD# 2074	NR	-,.,	G	7/17/87
Shima PP	RD# 2115	G	3/6/87	NR	
Staten Isl.	RD# 38	NR	-,-,-,		
Terminous	RD# 548	G	3/19/87	G	7/9/87
Twitchell Isl.	RD# 1601	NR	-1		
Tyler isl.	RD# 563	NR			
Union Island	RD# 1	NR			
Upper Jones	RD# 2039	G	3/5/87	G	10/13/87
Veale	RD# 2065	NR			1
Venice Isl.	RD# 2023	NR			
Victoria Isl.	RD# 2040	NR			
Webb	RD# 2026	G	10/26/89		
Woodward Isl.	RD# 2072	NR			
Wright-Elmwood	DD# 2110	ND			

(NR = No reply G = Granted)

anial mudel epone 22 lockpA & eugh

Sampling Frequency

Initially, quarterly sampling was planned for each site. Sampling began in March 1987 at the 54 drains for which permission was obtained. Water samples were analyzed for minerals, selenium, Dissolved Organic Carbon (DOC), and Total Trihalomethane Formation Potential (TTHMFP). Standard field measurements of temperature, dissolved oxygen, pH, and electrical conductivity were also performed on site.

In August 1987, a decision was made to increase the sampling frequency at the available DIDI sites from the original four times per year to six times per year. The increased sampling frequency was intended to partially compensate for the smaller number of drainages sampled than planned, and to study the impacts of the dry weather conditions which began in 1987.

The program was further modified in August 1988 to include more frequent sampling during the months of June to July and November to January because of the summer and winter peak discharges of agricultural drainage.

The advisory committee suggested more frequent monitoring of drainage from two Delta tracts and their surrounding channels. Bouldin Island and Upper Jones Tract were selected because they might serve as good representatives of the northern and southern areas of the Delta, respectively. Samples were collected weekly during two 4-week periods that fell within the summer and winter peak drainage periods. The remaining drainage stations in the program continued to be sampled every two months.

In July 1989 DWR staff conducted a synoptic survey along the major channels where Sacramento and San Joaquin river water flowed toward the State and Federal water project intakes. This activity was repeated in January 1990. The channel stations are shown in Figure 7. The data provided water quality and flow mixing information across some parts of the Delta.

aber tel glut gevine lene 23 abhverled to engra

Figure 7. Deltawide Channel Survey, July 25, 1989

Laboratory Analyses

TTHMFP and TOC samples were analyzed by ENSECO-CAL Analytical Labs between July 1987 and December 1988, and between May and June 1989. DWR Bryte Lab performed the TTHMFP and TOC analyses between January and April 1988 and August 1989 to present. Pace Laboratories performed TTHMFP in July 1989. Except as noted, other constituents were analyzed at the Department's Bryte Laboratory.

In 1981 DWR developed a raw water TTHMFP test to compare the relative maximum concentrations of THM precursors in Delta waters prior to water treatment. It is one of many types of measurements used to study the quality of different sources and types of water.

This raw water TTHMFP test requires a high dose of chlorine to meet the "chlorine demand" of suspended and organic material in the samples and to maintain a chlorine residual during the holding period after adding chlorine to the sample. While the chlorine dosage and holding time may not reflect the THM concentration of a treated water sample, the Technical Advisory Group members of IDHAMP, which include water quality engineers and chemists from major water utilities and the State Department of Health Services, found the procedure acceptable for the purposes of comparing the relative levels of THM precursors in Delta waters.

Comparisons of the raw water TTHMFP to those THM concentrations in treated water have led to a multitude of correlations. The numerous correlations are a function of the unique design and operating characteristics of individual water treatment plants. These differences go far beyond the use of specific disinfection chemicals and holding times. There are differences in the operating efficiencies to reduce suspended material prior to chlorination as well as in the characteristics of the raw water quality. This, thereby, affects the chlorine demand and resulting concentrations of disinfection by products that are formed. Therefore, there is no single relationship that can be modeled for all raw water and treated water TTHMFP. The data does, however, show that there is some type of proportional relationship between raw water TTHMFP and that of treated water.

Reductions in the THM formation potential of untreated water will generally result in lowered production of THMs and other DBPs (disinfection by products) in treated drinking water.

Upon arrival at the laboratories, the TTHMFP samples were spiked with a dosage of 120 mg/L of chlorine, a concentration sufficiently high to meet the highest chlorine demand and maintain a chlorine residual after incubation for seven days at 25 C. Earlier DWR results showed this high dose was necessary for meeting the exceptionally high chlorine demand in agricultural drain water samples. After incubation, the samples were quenched with sodium thiosulfate and analyzed using a gas chromatograph, with periodic confirmation by means of gas chromatograph-mass spectrometer. ENSECO-CAL Laboratory and the DWR Bryte Lab followed EPA Methods 601 and 502.1 for total trihalomethane formation potential (TTHMFP) analyses.

Unless specified elsewhere in this report, the TOC analyses were on filtered samples $(0.45 \mu \text{ pore size})$. Therefore, these were DOC (dissolved organic carbon) results.

1

1

l

Pesticides were analyzed according to standard EPA procedures. All other constituents were analyzed according to the latest edition of "Standard Methods for the Examination of Water and Wastewater." These procedures are summarized in Appendix E of "The Delta As A Source of Drinking Water, Monitoring Results, 1983 to 1987," published by DWR, August 1989. The results of duplicate and spiked samples for pesticides and THMFP analyses are described in the Appendix.

III. Results

The study is currently collecting data to: (1) characterize the quality of drain water and volume of discharge to the Delta and (2) estimate their impact on water quality in the channels and at drinking water supply intakes. As this work is completed, the impacts from other sources (e.g. bay water, San Joaquin River) will be compared.

Our observations have helped develop a series of working hypotheses about the water quality (e.g. pesticides, TTHMFP) in drains and channels in some segments of the Delta.

Figure 8 illustrates the exchanges of water on a typical Delta island during the growing season. Irrigation water is siphoned from the adjacent channels into ditches about 10 feet wide. These ditches parallel the levee about 100 feet inside the inner toe and then discharge into lateral ditches 4 feet wide that divide the island into checks ranging in size from 20 to 50 acres. The water then flows from these laterals into smaller temporary spud ditches, about 10 inches wide and about 20 inches deep, which parallel the crop rows at intervals of 50 feet to 100 feet. Rainfall also contributes to irrigation. Some of this water is lost to evaporation and transpiration (ET) by growing crops and the remainder percolates through the soils to the deeper island drainages. Water also enters and leaves the islands as underground seepage. Drain water collects into open drainage ditches (6 feet to 10 feet deep) downslope of the irrigated fields. Drainage is then periodically pumped out into the channels. The drainage pump motors are electrically driven and automatically activated by float switches that operate the pumps whenever drainage reaches a certain water level at the base of the pump station platform, which sits above the drain terminus.

The magnitude of these exchanges will vary with season and hydrology. For example, rainfall contribution is insignificant during the summer and ET minimal during the winter. The annual drainage discharge cyle has two peaks and two troughs. During the growing season, drainage volumes reflect the degree of irrigation. The peak drainage period is during the summer, typically July. As irrigation decreases and crops are harvested, drainage volumes become less as the summer ends and fall begins. Drainage volume begins to increase in December through the following February as farmers flood the fields to leach out accumulated salts in the soil. This flooding is necessary to prevent crop damage and to prevent loss of crop yield. The winter peak drainage time is typically mid-January. Depending on weather conditions and seasonal hydrology, the peak summer and winter drainage months may be a few weeks earlier or later. In the late winter, drainage is again low but will increase as spring irrigation begins.

Figure 8. Typical Delta Island Water Exchange

A. Literature Review

Initial activities focused on compiling and reviewing reports from earlier DWR studies on agricultural drainages in the Delta. The most informative report was DWR Report No. 4 "Investigation of Sacramento-San Joaquin Delta Quantity and Quality of Water Applied To and Drained From Delta Lowlands." This study conducted in 1954-55 examined the quantity and quality of applied irrigation water and of agricultural drainage on a combined field and computed basis.

The study area and study subunits (groups of tracts and islands) are shown in Figure 9. Tracts within each study unit are presented in Table 2.

30

and set

A NUMBER OF STREET

Contraction of the local distribution of the

(STATISTICS)

and the second se

Table 2. Delta Study Units, DWR Report No. 4

Unit Tract or Island or Reclamation District

- 2 RD 900 West Sacramento
- 3 RD 673
- 6 RD 307
- 7 Sutter and Merritt
- 8 Pierson, McCormick, and Glanville
- 9 Hastings and Egbert
- 10 Liberty
- 11 Ryer and Prospect
- 12 Grand
- 13 Twitchell, Brannon, Andrus, Tyler
- 14 Sherman
- 15 Bradford, Webb, Bethel, Franks, and Jersey
- 16 Orwood, Palm, Holland, Hotchkiss, and Quimby
- 17 Byron and Clifton
- 18 Staten, Bouldin, and Venice
- 19 Bract, Canal Ranch, and New Hope
- 20 Empire, King, Terminous
- 21 Bacon, Mandeville, McDonald, Mildred, and Medford
- 23 Upper and Lower Jones and Dressler
- 24 Lower, Middle, and Upper Roberts
- 25 Union, Fabian, Woodward, and Victoria
- 26 Rough and Ready Island and part of Middle Roberts
- 27 California Irrigated Farms (Stewart and Pescadero)

The 1954-55 study defined the Delta Lowlands to cover a land and water area of about 469,000 acres of which about 374,000 acres were developed for agricultural purposes and which about 292,000 acres were irrigated in 1955. Within the Lowland areas developed

for agricultural purposes, 33% (121,000 acres) have a north mineral soil type, 16% (61,000 acres) a south mineral type, and 51% (192,000 acres) a middle organic type.

The soils of the Delta margin are mainly mineral in character with variable admixtures of organic matter. The mineral soils were developed from valley plain materials and for the most part represent a transition between organic soils of the flat and depressed river delta basin and the better drained soils of the alluvial fans and valley floor.

The organic soils are derived from the extensive marshland vegetation that once occupied the Delta basin. A century and a half ago, the Delta was a vast tule march. Dense stands of the great bulrush, or tule (*Scirpus lacustris*) occupied the center of each island, where shallow water covered the surface most of the year (USDA, 1941). The organic content of peat soils is 50% to 80%. Areas with intermediate organic soils will have 10% to 50% organic matter and mineral soils about 10% or less.

The organic soils occupy a larger aggregate acreage (about 250,000 acres) than the mineral soil areas. Most of the central Delta has Staten and Venice peaty muck soil that have 60% to 70% organic matter. Most areas that have the intermediate organic type soils (Ryde silty clay loam) will have 30% to 50% organic matter.

DWR Report 4 (1956) was used to identify the magnitude of drainage volume on a Delta-wide basis and to determine drainage patterns associated with crop acreages, island soil types, and specific islands and tracts. The report showed that summer drainage volume was highest in July August and winter volume highest during December January. There was no information on TTHMFP concentrations as THM was not a water quality issue at that time. The conclusion of this report with respect to drainage impacts on salts in Delta waters was:

"... that agricultural practices within the Delta Lowlands during the summer, when the problem of water quality there is most critical, do not degrade good quality Sacramento River water as it moves through the Delta to the Tracy Pumping Plant but rather enhances its quality by removing a portion of its salt content. In the winter months, when the accumulated surplus salts are discharged to the channels, there is usually sufficient surplus flow through the Delta to dilute and to carry out to the ocean the leached salts. However, it should be noted that the preceding statement applied to conditions as of 1954-55. Any additional upstream regulation of a dry year, such as 1924 or 1931, will decrease winter flows through the Delta to the extent that leached salts may not be completely removed from the area."

In 1964, the Department re-examined the qualities and quantities of agricultural drainage in the Delta. The field study, however, was selective rather than exhaustive, and ran from July through November. Figure 10 shows the location of the study's sampling stations and soil types in the Delta. Only 7 percent of the 200 pump stations in the Delta were sampled but they accounted for 20 percent (73,400 acres) of the irrigated land (367,000 acres). The findings are reported in DWR Bulletin No. 123 "Delta and Suisun Bay Water Quality Investigation" (August 1967). As found in DWR Report No. 4, drain flows, computed from power meter readings, indicated that more water per acre was drained from organic soils than mineral soils. They also noted that:

"Conditions of pumping from the drains varied from intermittent pumping on Grand Island, composed mostly of mineral soils, to constant and high rate pumping on Staten Island, composed almost entirely of organic peaty soils...When consumptive use is high, during July and August, the drainage is primarily tailwater. In the winter, salts are leached out of the soils and the dissolved minerals reach a maximum...Seasonal concentrations of TDS, Cl, and N during 1964 appear reasonably consistent and indicate that the poorest quality water was discharged during the winter months...Examination of the data shows that drainage waters discharged in the south-eastern Delta were of poorest quality."

As with the 1954 study, there was no information on TTHMFP.

Figure 10. Composition and Distribution of Soils in the Sacramento-San Joaquin Delta Lowlands

B. Drainage Water Quality

1. Pesticide Survey

From July 18 to July 22, 1988, 30 drains were sampled for pesticides. The list of pesticides to be analyzed by the laboratory was based on the selection scheme used in the Department's Interagency Delta Health Aspects Monitoring Program (IDHAMP).

Recognizing the cost and technical limitations associated with analyzing water samples for all pesticide contaminants, a selection procedure was developed to identify those pesticides with the most likelihood of being present at a particular sampling site and time period in the Delta. Pesticide use data compiled by the State Department of Food and Agriculture were evaluated to determine quantities used and time of application. The list of pesticides with the highest reported use was further reviewed to delete those that were insoluble in water and, therefore, would not appear in water samples but rather sediment and biota.

The final target list of 26 chemicals for monitoring represented those pesticides that had the higher probability of being detectable in Delta waters if present as a contaminant in the summer. To water treatment and distribution entities, these water soluble compounds pose difficulties in removal when compared to insoluble contaminants that can be removed by flocculation, coagulation, or filtration processes during treatment.

Sampling was conducted in July because it is the peak month of farm pest control chemical applications and peak summer drainage discharge month. Therefore, sampling in July would enable a higher likelihood of detecting pesticide residues in the island drainages.

Detailed steps of the selection scheme are reported in the IDHAMP reports.

Six pesticides were found above the analytical limit of detection in one or more of the drain water samples. The pesticides were atrazine, bentazon, carbaryl, methamidophos, ordram, and simazine.

One or more of the six detected pesticides were detected in thirteen of the drains. Atrazine was detected in drains on Bouldin, Kings, Pierson, Terminous, and Upper Egbert Islands. Bentazon and ordram were detected in Colusa Drain. Carbaryl was detected in a Egbert Island Drain. Methamidophos was detected on Upper Egbert Island. Simazine was detected in drains on Mossdale and Upper Egbert Islands and Shima Tract. In all cases, the levels found were below existing drinking water standards or action levels established by the California Department of Health Services. Table 3 summarizes the pesticide data compared to drinking water criteria. Since 30 drains are a small proportion of the 260 drains in the Delta, it is premature to conclude that similar results would be seen at all drainages. The detection of pesticides in water is also highly dependent on timing. Water samples collected on a single day of the year do not necessarily reflect pesticide concentrations during the rest of the year. Further sampling would confirm whether pesticide regulations and farming practices have effectively reduced the threat of serious contamination to the Bay-Delta environment.

Since this study focused only on drinking water quality concerns, we did not sample sediment or biota for pesticide analyses. Therefore, ecological concerns about pesticides are not addressed.

Table 3. Pesticide Monitoring Results July 18-22, 1988 (ug/L)

E

and a state

STA. NAME	EC (uS/cm)	2,4-D	Alachlor	Atrazine	Bentazon	Bolero	Captan	Carbaryl	Carbofuran	Dacthal	Dicofol	Dinoseb	Diazinon	Ethyl Parathion	Methyl Parathio	MCPA	Methamidophos	Nudrin	Ordram	Orthene	Paraquat	Proparagite	Propanil	Propham	Simazine	Triforine	Ziram
BOULDIN1	178			0.60																							
BOULDIN2	202			0.25																	•••					••	
BRANNANPP03	1010																										
BRANNANPP04	579																									1.5	
COLUSA	554				2.5														0.76								
EGBERTPP01	297							8.5																			
KINGISPP01	439			0.13																						•••	
KINGISPP02	652													••													
MCCORWIL01	166																				**			* *			
MOSSDALE01	1000												**										••				
MOSSDALE04	1120																								0.1	**	
MOSSDALE10	992																								0.1		
MOSSDALE11	1080																								0.3	**	
NETHERLAND01	222															•••											
NETHERLAND02	206	• •											* *														
PESCADERO01	1280					•••													••	•••				2.2		(\mathbf{x}, \mathbf{x})	
PESCADER002	1560											••									$\sim 10^{-10}$			0.5			
PESCADER003	1850					••		••					**			••			••								
PESCADERO04	1890																		••				**				
PIERSONPP01	268			0.34		••													•••							••	
PROSPECTPP01	183												1.1														
RINDGEPP02	870					••																					
RIOBLANCO01	739			••		••								• •												••	
SHIMATR	577					••																	* *		0.2		
TERMPP01	425			0.41		• •															**					$\sim 10^{-10}$	
TERMPP02	542					••						**							••							**	
UPEGBERTPP01	344			0.91														••					**				
UPEGBERTPP02	277																										
UPEGBERTPP03	331																4.6								8.4		
UPJONESPP02	860							••																**			

Note: All other values (--) below reporting limit.

2. TTHMFP

a. Monthly Concentrations

Drains in this study were generally high in TTHMFP, as compared to water in the Delta channels. Although concentrations at any given site varied with time, they tended to fall within characteristic concentration ranges at a given drain and time of year. Overall, TTHMFP ranged from a high of 5100 μ g/L in May 1987 on Egbert to a low of only 100 μ g/L in October 1987 on McCormick-Williamson tract.

The range of drainage TTHMFP concentrations by calendar month is shown in Table 4. The full station names and locations of the sampled drainages are listed in the Appendix. When a range of values for a specific month (e.g., AGDEMPIRE January) appear, it is the result of combined data for 1987 and 1988 and/or reflects multiple samples having been taken in some months. The ranges indicate the magnitude of concentrations and show that changes in TTHMFP such as in the winter (December-February) will vary with the stages of flooding and draining operations on the islands. All observations are reported in the Appendix. With few exceptions, TTHMFP observations from multiple drainages of the same island are within the same range of values.

Monthly differences among the multiple drainages for the same island are thought to be due to the extent of irrigation. For example, DWR sampling crew observed farmers alternating the areas being flooded during the winter. In areas where flooded fields were being drained, the power consumption was higher for the pump stations than at pump stations that were inactive in unflooded and undrained field areas on the same island. Therefore, drainage water quality and volume probably reflected what stage of activity (e.g., initial flooding, holding, draining) was occurring on the area drained by the individual pump stations. For example, during a holding period (ponding), there was less variability in TTHMFP. However, if sampling occurred during the stage of flooding or draining the fields, the observations were more variable and reflected these stages.

Most of the drains sampled to date lie along the periphery of the Delta. The northern, eastern, and southern edges of the Delta are covered. We have not yet collected data in the central region nearest to the State and Federal water project intakes and the Contra Costa Water District intake. Recently (December 1989), written permission was granted to sample on Webb and Holland Tracts, and Bacon Island.

Table 4. Monthly Range of TTHMFP Concentrations, 1987-88 Units in micrograms per liter

STATION	JAN	FEB	APR	MAY	JUN	ALIG	SED	OCT	NOV	050
AGDEMPIRE	3600-4300	2300-4000	2100-4800	2700-4400	1100-4300	3400-3700	2700 2800	1600 2200	1400 1500	DEC DEC
AGDGRAND	2400-2600	2200	980-1500	790-1100	860-1400	750 760	1200 1200	1600-2200	1400-1500	2500-2900
AGTYLER	11000000000		1400	700-1100	1100	150-160	1200-1300	860-1200	950-2500	1700-1900
BOULDIN1	1600-2900	1600	1400	1100	1100	750 0100				
BOULDIN2	1600-3300	1600		2200		750-2100		2000		1700-3300
BRANNANPP01	2200-2700	1000		2300		900-3700		1800		2800-3100
BRANNANPPO2	1200-2100			2400		1300		1000		1900
BRANNANPPO3	1600-2400			1800		1900		370		620
RDANNANDDOA	2200 2100			980		1600		160		
CLIETONCT	1000			1300		950		1700		2000
ECREPTOD01	800 2100			2000						
ECREDITODO2	1200 2400			3400		1300		1700		
EGBERTPP02	1300-2400	100		5100				3600		
KINGISPPUT	1000	480		1200		2400		830		1200
KINGISPP02	1500	660		1500		2200		800		1700
KINGISPP03	1400	900		1800		2600		1400		2000
MCCORWILOI	410			660-720		410		1100		
MCCORWIL02	320			670		390		100		
MOSSDALE01*	300			460		990		230		
MOSSDALE02*	300-320			650		670		200		
MOSSDALE03*						1300				
MOSSDALE04*	750			970		1100		880		
MOSSDALE05*						1100		000		
MOSSDALE06*						2500				
MOSSDALE08*						820		700		
MOSSDALE09*						1400		560		
MOSSDALE10*	1500			1200		890		480		
MOSSDALE11*	560			1700		770		400		
MOSSTRPP02*	640-870			990		400		760		
MOSSTRPP03*	930			1100		730		100		
NETHERLAND01	380-900			490		690		390		
NETHERLANDO2	350-900			450		880		220		
PESCADERO01	930		430	580		1500		500		
PESCADERO02	770		470	500		1500		530		
PESCADER003	770		660	840		1100		550		
PIERSONPP01	940-2600		000	1700		640		630		
PROSPECTPP01	2000			640		650		680		
RINDGEPP01	3100	1200		2500		2200		1100		
RINDGEPP02	2200	1200		2100		2800		1100		2000
RIOBLANCO01	720	410		2100		2000		1100		2000
RIOBLANCOO2	720	370		750		620		710		610
SHIMATE	490	420		1000		690		710		500
TERMPP01	1300-2400	450		1000		960		870		820
TERMPPO2	1500-1000			1600		1400		490		2700
UPEGRERTPP01	540			1700		990				1300
LIPEGREPTOP02	340			2100		1400		960		
UPFORFRTPP02	600			860		1000		730		
UD IONESDD02	670 1700	010		2400		1000		1600		
UP JONE SPPUZ	0/0-1/00	810		1400		590-1400		950		1200-1600

* Moss Tract is now a golf course. Mossdale Tract is being converted from agriculture to residential uses. Drainage volumes observed during the period of record were very small. Both of these tracts lie outside the Delta Lowlands and have been dropped from the study.

b. Soil Type Relationships

The expected maximum range of TTHMFP concentrations for sampled islands was estimated for the summer and winter peak drainage periods, respectively. Data for August were used to estimate the summer month concentrations. January data were used to estimate the winter flooding TTHMFP levels. These two months had the most data on drainages during the summer and winter peak drainage periods.

When TTHMFP data were not available, the assumption was made that concentrations observed at a sampled drain were representative of the unsampled drains on the same island. This assumption was based on the uniform soil types reported for the sampled islands or tracts. Additional data collection is needed to enable these assumptions to be further tested and revised. Three TTHMFP concentration ranges were plotted to determine if there were any geographic pattern associated with the TTHMFP concentrations. The ranges were: (1) less than 1000 μ g/L, (2) between 1000 and 2000 μ g/L, and (3) greater than 2000 μ g/L. The range of values assigned to each sampled island were based on the values reported for August and January observations. Maximum values rather than the averages or average of maximum values for an island or tract were used when there were more than one observation.

The August TTHMFP distribution clearly showed a relationship to the soil composition of the Delta for the islands sampled (Figures 10 and 11). Drainages on islands and tracts overlying mineral soils had less than 1000 μ g/L TTHMFP. Areas with intermediate organic soils had expected TTHMFP concentrations ranging from 1000 to 2000 μ g/L. The highest TTHMFP concentrations (greater than 2000 μ g/L) were observed from islands and tracts overlying peaty organic soils. TTHMFP in the 3000 μ g/L to 4000 μ g/L range were observed in drainwater samples from Empire Tract and Bouldin Island. However, these high values are in part due to bromides in connate water in that particular region of the Delta (Figure 11).

During January when fields are being flooded or drained from winter leaching, the highest observed TTHMFP concentrations in the drains were mostly over 1000 μ g/L for the islands that were sampled (Figure 12). Drainage from intermediate organic soil and peaty organic soils typically had more than 2000 μ g/L TTHMFP, as did drainage from northern mineral soil areas. Southern mineral soil areas had drainage below 1000 μ g/L. In most cases, the January maximum TTHMFP concentrations were higher than those observed in August for the same drain. For example, the respective August and January maximum TTHMFP were 3700 and 4300 μ g/L for Empire Tract (AGDEMPIRE), 2900 and 3100 μ g/L for Bouldin Island (average of maximums at BOULDIN1 and BOULDIN2), 1215 and 2150 μ g/L at Terminous Tract (average of maximums at TERMPP01 and TERMPP02), 1440 and 2600 μ g/L at Brannan Island (average of maximums at BRANNANPP01-4), 760 and 2600 μ g/L at Grand Island (AGDGRAND), and 1400 and 1700 μ g/L at Upper Jones Tract (UPJONESPP02). Figure 13 graphically shows the August and January ranges of TTHMFP at some drainages from peat, intermediate organic, and mineral soil islands or tracts. At some drainages (e.g. King and Upper Egbert), the January observations were lower than that of August. This may have been attributed to sampling late after these islands were leached or there was no leaching performed that winter. The figure demonstrates the earlier conclusion that it is difficult to assign a single expected TTHMFP value to an area. The use of ranges of TTHMFP concentrations over a specific time period is a more reasonable approach in describing the TTHMFP of a drainage.

Data from previously unsampled tracts and islands are needed to confirm the relationship between soil and TTHMFP concentrations observed thus far. Variations may occur because of non-uniform soil type on some islands or proximity to bay water influences. Islands near the western tip of the Delta may have higher TTHMFP because of bromides in bay-fresh water mixtures used for irrigation during the dry summer. Other islands such as Empire Tract have connate water that is high in salts including bromide as seen by brominated THM concentrations. Islands in the central Delta may have the greatest influence on the water quality of Delta exports.

In 1981 DWR collected soils along the alignment of the proposed Peripheral Canal project (DWR, 1982). Filtered soil extracts from composited mineral soils collected along the northern alignment and composited peat soils collected along the southern alignment were analyzed for TTHMFP. The soil samples were taken 0.6 meters below the surface with a core sampler. The extracts from the composited mineral soils had 27,000 μ g/kg TTHMFP and the composited peat soils had 61,000 μ g/kg TTHMFP. The TTHMFP in both composited sample extracts was comprised of chloroform with no measurable brominated THM compounds. The soil extract data may, therefore, explain the soil type relationship with drainage TTHMFP being observed during high irrigation months (summer irrigation and winter flooding to remove salts).

The island drains are open ditches that are dug to a depth of 6 feet to 10 feet on most Lowland areas. These drains collect water percolating through the soils. By design, surface runoff is not commonly channeled into these drains. The chemistry of the drainwater therefore reflects the water coming in contact with salts and organic matter in these soils (e.g. leaching, ion exchange, reactions).

Additional soil sampling at depth is planned for 1990 to further examine differences among regions of the Delta. More drainage sampling on other islands is needed to confirm the observed relationship between TTHMFP and soil type classification.

40

Figure 11. August THMFP Concentrations Observed Maximums

Figure 12. January THMFP Concentrations Observed Maximums

Summer and Winter Drainage TTHMFP Observed ranges for selected drainages

Figure 13.

c. Bouldin Island - Upper Jones Tract

Drainage water from two Bouldin Island drains and one drain from Upper Jones Tract were sampled weekly during times of increased drain activity. In the summer the drains were sampled during July-August; winter sampling was conducted between December and early February. The results of the sampling are summarized in Table 5.

Based on the DWR soil composition maps (1967), Bouldin Island overlies peat soil while Upper Jones Tract overlies soil classified as intermediate organics.

All measures, including EC, DOC, and TTHMFP gradually increased and then decreased over the period of irrigation and leaching. For example, sampling during summer 1988 at Bouldin Pump Number 2, showed a smooth increase of THMFP from 1100 μ g/L on July 18 to a maximum of 3700 μ g/L on August 24. (EC and TOC peaked one week earlier.) All measures were beginning to drop by the final week of sampling on August 31.

Measurements during winter of 1988-89 show that drain THMFP concentrations were already elevated on December 20, and held approximately steady until January 26, when THMFP concentrations dropped by about half. Monitoring at the other stations reflect similar features.

In view of the limited sampling opportunities, there was hope that the Bouldin Island data might serve as a good representative of northern Delta islands and Upper Jones Tract representing the southern region in spite of varying soil types.

Bouldin Island data were compared to the northern area drainages which included the adjacent peat soil islands (Empire Tract and Terminous Tract) and northern intermediate organics areas (Brannan Island, Tyler Island, Grand Island). Upper Jones Tract data were compared with Pescadero Tract drainages.

The data are inconclusive to show that Bouldin Island and Upper Jones Tract drainages are representative of drainage water quality conditions that would be observed in the northern and southern Delta areas, respectively. More sampling at other islands is needed for comparison, as there is an undetermined variety of Delta island drainage conditions.

The data demonstrate the importance of monitoring during key periods of drain activity. They also demonstrate that single measurements of THMFP or other water quality parameters in island drainages should not be used to characterize drain water quality. Regular measurements over time will provide good overall information about the drains. Monthly ranges of data should be used to best characterize drain water quality rather than single values. Estimates of specific drain discharge impacts on Delta water quality will require detailed monitoring of more islands for both drainage quality and quantity to obtain flow-weighted estimates of water quality constituents.

Table 5. Bouldin Island - Upper Jones Tract THMFP Summer irrigation and winter leaching period

Station	Date	EC	DOC	CHCL3	CHBRCL2	CHBR2CL	CHBR3	TTHMFP
BOULDIN1 BOULDIN1 BOULDIN1 BOULDIN1 BOULDIN1	07/18/88 08/10/88 08/17/88 08/24/88 08/21/88	178 186 338 323 349	6.8 5.9 19 19 25	840 710 2000 2000 2000	14 33 98 110 120	1 1 4 2 3	1 1 1 1	860 750 2100 2100 2100
BOULDIN2 BOULDIN2 BOULDIN2 BOULDIN2 BOULDIN2 BOULDIN2 BOULDIN2	07/18/88 08/10/88 08/17/88 08/24/88 08/24/88 08/24/88 08/31/88	202 218 440 350 351 312	10 14 39 32 26 25	1100 1600 1800 3200 3600 2000	19 56 170 150 120 91	1 1 2 1 2		1100 1700 2000 3400 3700 2100
UPJONESPP02 UPJONESPP02 UPJONESPP02 UPJONESPP02 UPJONESPP02	07/18/88 08/10/88 08/17/88 08/24/88 08/21/88	860 598 721 766 516	8.1 8.3 14 10 4.8	770 920 1200 1200 420	220 210 210 200 120	48 28 19 26 44	1 1 1 3	1000 1200 1400 1400 590
BOULDIN1 BOULDIN1 BOULDIN1 BOULDIN1 BOULDIN1 BOULDIN1	12/20/88 12/28/88 01/03/89 01/11/89 01/26/89 02/03/89		51 56 63	3100 2500 2400 2700 1400 1340	130 190 220 170 160 230	22 23 22 1 8 20	4 1 1 1 1	3300 2700 2600 2900 1600 1600
BOULDIN2 BOULDIN2 BOULDIN2 BOULDIN2 BOULDIN2 BOULDIN2	12/20/88 12/28/88 01/03/89 01/11/89 01/26/89 02/03/89		56 85 70	2700 2800 2400 3100 1500 1500	120 67 220 160 96 120	23 25 22 8 13 11	4 1 1 1 1	2800 2900 2600 3300 1600 1600
UPJONESPP02 UPJONESPP02 UPJONESPP02 UPJONESPP02 UPJONESPP02	12/28/88 01/03/89 01/11/89 01/26/89 02/03/89		9.8 9.6	980 1200 530 510	200 200 110 240	48 43 25 52	3 1 3 3	1200 1400 670 810

EC (electrical conductivity) in μS/cm DOC (total organic carbon) in mg/L CHCL3, CHBRCL2, CHBR2CL, CHBR3, and TTHMFP in μg/L

d. Precursor Reactivities and Characteristics

Several studies have shown humic substances to be important THM precursors in natural waters (Oliver and Thurman, 1981; Rook, 1974; Rook, 1978; Stevens et al, 1976; Oliver and Lawrence, 1979). The yield of THMs from the reaction of humics with chlorine may in part be caused by the different origins and properties of the humic substances which vary widely with source (Ghassemi and Christman, 1968; Weber and Wilson, 1975).

During 1987 DWR sent water samples to the University of Arizona for characterization of dissolved organic matter (DOM). Samples from Tyler Island drain, Grand Island drain, Empire Tract drain, Upper Jones Tract drain, Sacramento River at Greenes Landing, San Joaquin River near Vernalis, and the H.O. Banks Pumping Plant Headworks were collected from the Delta. The analyses were performed by Dr. Gary Amy and reported in AWWA Journal, vol. 82, January 1990 (Amy et al, 1990).

The objective of the research was to use molecular weight and other characterizations to identify possible "fingerprints" of agricultural versus nonagricultural sources of THM precursors and humic substances. The apparent molecular weight (AMW) distributions of the nonpurgeable dissolved organic carbon (DOC) were compared.

AMW distributions, based on DOC or THMFP, can be studied as bar graphs representing the discrete molecular weight fractions. If different molecular weight fractions exhibited different THM yields and reactivities (μg THMFP/mg DOC), the calculated average molecular weight of the DOC should differ from that of the THMFP. A higher average molecular weight based on THMFP rather than DOC indicates that higher molecular weight material produces more reactive in forming THMs.

The general observations were that drain samples when compared with river and lake samples had:

- 1. a higher molecular weight for DOM, greater levels of DOC, UV absorbance, THMFP, and TOXFP (Total Organic Halide Formation Potential),
- 2. a higher percentage of humic substances,
- 3. a higher average THMFP:DOC ratio thus indicating more DOC and material that formed THMs,
- values of TOXFP:DOC that showed a higher propensity to form organic halide, and
- had four times greater TTHMFP and ten or more times greater DBPs being formed.

Amy's work indicates that the THM organic precursors in drain and nondrain water samples are significantly different in their character and propensity to form THMs and other DBPs. The drain water THM organic precursors (DOC) as characterized in this study are more reactive in forming greater levels of THMFP, TOXFP, and other DBPs than the applied source water (Sacramento and San Joaquin rivers) from the Delta channels.

Since the DOC characteristics of channel water and drain water differ, drain water THMFP concentrations are probably not due to concentrating effects of THM precursors of DOC such as from the evaporation of applied water. The higher TTHMFP in island drainages in the winter when evaporationtranspiration is lowest also strongly indicate that soil leaching is the dominant cause of increased TTHMFP in the Delta. Further study of the fate of applied water THM precursors is necessary to verify this conclusion.

Drain water had much higher AMW compounds (5,000 to 10,000 and 1,000 to 5,000) while most river source water had 1,000 or less AMW (Table 6). Empire Tract drainage samples of DOC and TTHMFP had about 16% to 18% of its organic compounds less than 1,000 AMW and about 83% to 85% above 1,000 AMW. Samples from the San Joaquin River, Sacramento River, and Banks Headworks had 45% to 60% of their DOC and TTHMFP compounds less than 1,000 AMW and 37% to 55% above 1,000 AMW.

Microbial decay would be expected to break down high molecular weight compounds to lower molecular weight compounds rather than synthesize larger and more complex compounds. The UV data also showed more humic substances in the DOC pool of the drainwater. These results agree with other studies that found marsh-bog water to have higher THM formation potential than surface water (Oliver and Thurman, 1981).

Because of the underlying decaying organic soils, Delta islands are major storage pools of soil humic substances. Soil humics are considered to be the precursor to aquatic humics over geological time frames. However, additional studies on the consistency and seasonality of the AMW distribution in drainages and river channels should be pursued further to determine the extent of impact to Delta drinking water supplies.

Other studies (Thurman, 1985) of the concentration of humic substances in natural waters support Dr. Amy's findings. In wetlands, the DOC is different from river and lake waters. This difference is the increased percentage of humic and fulvic acid which is 70% to 90% of the DOC (Figure 15).

Table 6. Percent Distribution of AMW

Sampling Station	Number of samples	>10,000 AMW	5,000 to 10,000 AMW	1,000 to 5,000 AMW	500 to 1,000 AMW	<500 AMW
San Joaquin River (Vernalis)	2	13	4.5	29.5	26	26
Sacramento River (Greenes Landing)	2	8	12	28.5	27.5	30
Banks Headworks	3	8	12	27	27	26
Empire Tract	3	12.5	30.5	42	9	7

Percent distribution by wt. of DOC

Percent distribution by wt. of TTHMFP

Sampling Station	Number of samples	>10,000 AMW	5,000 to 10,000 AMW	1,000 to 5,000 AMW	500 to 1,000 AMW	<500 AMW
San Joaquin River (Vernalis)	2	4	4	34	30	30
Sacramento River (Greenes Landing)	2	9.5	2.5	43	11	34
Banks Headworks	3	3	14	34	36	13
Empire Tract	3	17	27	39	14	4

Data read from bar charts in Amy et al, 1990

1

8

Contraction of the

1

1

Contraction of the

THE REAL

1

Reference: Figure from E.M. Thurman, Organic Geochemistry of Natural Waters, 1985.

Figure 14. Humic Substances in Natural Waters

As for the decomposition rates of DOM, Saunders (1976) proposed the following generalization. Simple low molecular weight organic compounds decompose most quickly with turnover times of less than one hour to several hours. Higher molecular weight organics released by phytoplankton and bacteria decompose in 2 to 10 days. Other higher molecular weight dissolved organics decompose on the order of 100 days and there is assumed to be at least another class of organics that decays much longer than 100 days. This suggests that the highly reactive humic substances or THM precursors in island drainages originating from the organic soils will be more persistent than humics in water applied to the islands. In fact, humic substances, the most reactive fraction of the DOM in forming THMs, are very biorefractory. Carbon dating has established that humics in the Suwannee River (Florida) are 30 years old. It is the nonhumic fraction of the DOM, consisting largely of biochemicals such as proteins and amino acids, which is more biodegradable (G. Amy, pers. comm.).

The relationship between salinity and DOC in an estuary has been studied by many. Some studies have found a conservative behavior of DOC in estuaries such as the North Dawes, the Beaulieu, the Ems, the Rhine, and the Severn (Loder and Hood, 1972; Moore and others, 1979; Laane, 1982; Eisma and others, 1982; Mantoura and Woodward, 1983).

Mantoura and Woodward (1983) found that degradation did not significantly change the DOC concentration during its 200-day residence time in the Severn Estuary. Other studies showed that precipitation and flocculation of DOC, particularly humic substances, occurred at salinities of 5 parts per thousand and more (Sholkovitz, 1976). Sholkovitz (1978) found only 1% to 6% removal of DOC in the Amazon estuary by precipitation. However, the humic acid, which accounted for 5% to 10% of the DOC was nearly all removed in the estuary (60% to 80%). It appeared that fulvic acid is not removed in the Amazon estuary.

Aquatic fulvic acids generally have molecular weights of less than 2000 and are more soluble than humic acids which have molecular weights from 2000 to 5000 or more. Humic acids are more colloidal in size and will therefore "salt out" in saline estuarine waters.

While these studies show different conservative behavior in an estuary, they agree that in waters of less than 5 parts per thousand salinity (<5,000 mg/L), DOC behaves conservatively.

The conclusion based on the above studies is that estuarine waters of 5 parts per thousand or more salinity will tend to remove by precipitation the more reactive THM precursor humic acid fractions in DOC carried downstream by river inflow.

The studies show that humic substances (fulvic and humic acids) in Delta waters may be treated as conservative constituents because of short water residence time relative to decay rates, and low salinities. With the exception

of a few Delta sloughs, water flowing into the Delta is generally transported to the export pumps or out into the bay in a few days or weeks.

The relationship of bromides to the yield of brominated methane compounds (THMs containing bromide) for waters with similar DOC vary with the level of bromide in the untreated water. The wide variability is seen in the column THM-Br:THM-X percent in Table 7.

Two samples from the Empire Tract drain with DOC of 22.2 and 22.3 mg/L had 34% and 5% of the THMs as brominated THMs, respectively. This was due to 3040 μ g/L bromide in the former sample while only 183 μ g/L bromide was in the latter sample. However, two San Joaquin River (near Vernalis) samples had comparable DOC and bromide levels but the second sample had more brominated THMs (33% versus 48%). This suggests that the type of DOC compounds (humic versus nonhumic) may have a significant role in the TTHMFP and TBFP (total brominated methane formation potential) of water. Therefore, both bromides and organic matter influence the TTHMFP and TBFP in water supplies.

Additional samples of water, channel sediments, and island soils need to be collected for further characterization of THM precursors in the Delta. This work is needed to delineate the contribution and impact on the Delta of THM precursors from other sources besides island drainage.

Table 7. Characteristics of Drain vs. Nondrain DOC

Date Sample	DOC mg/	Anny TTHMFP L g/L	Modif. TTHMFP g/L	Br g/L	THM-Br: THM-X %	Humic of DOC %	AMW DOC based	Avg. AMW TTHMFP based	Avg. humic TTHMFP g/L	Non- Humic TTHMFP mol/L	Non- Humic TTHMFP g/L	Humic TTHMFP mol/L	
5/6/87	EMPIRE 1	22.2	2470	3580	3040*	34	51.4	5060	4720	1040	5.35	1430	11.8
7/28/87	EMPIRE 2	22.3	2690	2510	183	5	59.6	4530	7470	744	5.63	1950	16.4
9/22/87	EMPIRE 3	18.7	1800	2700	898	25			2780	2650			
6/10/87	GRAND 1	7.24	290	791	120*	4	61.7	2330	6930	77	0.56	213	1.81
7/28/87	GRAND 2	6.38	239	720	22	6	47.6	1440	2930	146			
6/24/87	TYLER 1	7.66	456	857	32	11	57.4	3140	2860	252	2.02	204	1.6
7/8/87	TYLER 2	10.4	642	1460	29	5	58	3880	5590	151	1.18	491	4.09
8/12/87	JONES 1	10	637	1550	175	17	40.3	2550	2700	224	1.59	413	3.29
9/28/87	JONES 2	6.36	433(-)	770	130	21			2330	2410			

Delta Island Drainage Samples

Delta Non-Drainage Samples (Rivers and Channels)

Date Sample	DC mg	Anny DC TTHMFP g/L g/L	Modif. TTHMFP g/L	Br g/L	THM-Br: THM-X %	Humic of DOC %	AMW DOC based	Avg. AMW TTHMFP based	Avg. humic TTHMFP g/L	Non- Humic TTHMFP mol/L	Non- Humic TTHMFP g/L	Humic TTHMFP mol/L	
6/10/87	SACTO 1	2.12	29(-)	200	12	7	38	730	440				
8/25/87	SACTO 2	3.14	164	208	22	11				985		2440	
5/6/87	BANKS 1	4.1	225	585	100*	18	55.1	790	1050	31	0.22	194	1.46
8/12/87	BANKS 2	3.37	199	426	213	56		940	920				
9/22/87	BANKS 3	3.5	241	450	173	50		1650	2000				
6/24/87	SJR 1	3.67	249	535	127	33	44.4	721	560	49	0.34	200	1.4
8/25/87	SJR 2	3.54	262	504	134	48		2100	2270				

(-) A positive chlorine residual was observed for all TTHMFP samples except Sacramento 1 and Jones 2 samples. This means for these two

samples the TTHMFP would have been higher if the chlorine dosage met the chlorine demand and residual concentrations. * IC data

Amy TTHMFP test conditions: pH 7.0, 20 degrees C., 168 hrs. holding, Chlorine dose = 3:1 (Cl₂:DOC) Modified TTHMFP: pH 8.0, 25 degrees C., 168 hrs. holding, Chlorine dose at 120 mg/L

Reference: Amy et al, 1990, "Evaluation of THM Precursor Contributions from Agricultural Drains" Modified TTHMFP data, THM-Br:THM-X (% on wt. basis), and IC bromide data from Metropolitan Water District of S. Calif.

3. Other Parameters

Correlations between different water quality measurements were tested. The data included observations from the Interagency Delta Health Aspects Monitoring Program and this study. The data were divided into two sets: (1) Delta drainage samples and (2) Delta channel water samples. All observations were used in computing and plotting the following regressions. The data set included mineral and TTHMFP analyses conducted on about 650 drain and 965 channel water samples collected each month from July 1983 - September 1989 throughout the Delta.

The correlations between EC and chloride concentrations and for EC and TDS were high for both data sets. Therefore, EC can be used to predict the TDS and chloride concentrations in most parts of the Delta. However, the EC to chloride data for drain water indicated not all drainages followed a common regression line (Figures 15-18).

The correlations of TTHMFP, each of the 4 THM compounds, and the sum concentration of the bromomethane compounds (TBFP, total bromomethane formation potential) with EC were found to be poorly defined. The TBFP to EC simple linear regression lines are shown in Figures 19 and 20. Therefore, the use of EC, chloride, or TDS to predict TBFP throughout the Delta is not recommended. Separate relationships, however, may exist for each location.

Further examination of the mineral data to characterize water types, origin, and mixing of Delta waters is a major part of the scope of work of both IDHAMP and this investigation. Future work will test relationships among different water quality measurements for individual stations and model development.

iii

Figure 17. EC - TDS Relationship - Delta Channel Water

Figure 19. EC - TBFP Relationship - Delta Channel Water

C. Drainage Volume

1. 1988 DIDI Survey

Power consumption and pump efficiency data were released to DWR for twenty six pumps, representing twelve islands in the Delta. We found that on islands where data from more than one drain were available, data from any one drain did not represent the activities on the entire island. Power data differed among some island pump stations for the same month, because farmers flooded one area, then another a few weeks later.

Billing cycles for power consumption usually do not follow calendar months. Since much of our analysis follows calendar months, we attempted to allocate power consumption data on a calendar month basis. Billing records which spanned two months, with approximately two weeks in each month, were divided so that half of the billed power was assumed to have been consumed in each month.

For example, if the billing cycle ended on the 15th of each month, the power consumption for February was assumed to be half that on the January 15 to February 15 bill, plus half of that on the February 15 to March 15 bill. When billing extended over three or more weeks within a month, the entire power consumption was credited to the month.

Power data for SMUD (Sacramento Municipal Utility District) customers were available only in two-month blocks. Power consumption was handled in a similar fashion to single-month billings. For example, a January 15 to March 15 bill was assumed to be distributed as 1/4th each January, and March, and 1/2 February. SMUD bills spanning two complete months were simply divided by two for each month.

The agricultural drainage systems were examined for information concerning pipe diameter, type and length; static head; and pump horsepower and efficiency. The available pump efficiencies were for pumps up to 50 years old. The pumps have aged so much that their efficiencies have probably changed significantly. Rather than deal with a wide range of questionable efficiencies, an overall 50% pump system efficiency was assumed. New pump tests requested by the pump owners may be needed to obtain more recent efficiency data on older pumps.

Friction head losses and other losses were ignored because they were assumed to be within the limit of uncertainty built into the assumed pump efficiencies, and pipe lengths were assumed to be short enough to make frictional head losses very small.

The volume of drainage water discharged was calculated in acre-feet using the constants and equations shown below.

60

Volume of water pumped in AC-FT: $Q = (KWhr)(Eff.)(2.65*10^6)/(Hs)(2.72*10^6)$ Q = (0.974)(KWhr)(Eff.)/Hs

Where: Q = volume of water in acre-feet. Hs = Static head in feet. Eff. = Efficiency (assumed to be 50%)

Kilowatt = KW = 737 ft-lbs of work in one second. Kilowatt-hour = KWhr = $60*60*737 = 2.65*10^{6}$ ft-lbs of work in one hour

Weight of Water:

Acre-foot = AC-FT = 325,872 gallons Gallon of Water = 8.34 pounds Acre-foot = 325,872*8.34 = 2.72*106 pounds of water

Estimates of monthly drainage volumes based on power consumption data are shown in Table 8.

Table 8 shows the seasonality of agricultural operations and the variability between islands and between drains on individual islands. Winter leaching activities can be seen on some islands or tracts, including Bouldin, Egbert, Rindge, and Terminous. Other tracts, including Mossdale, Netherlands and Upper Egbert apparently had no winter discharges.

Quantities of estimated drainage also varied widely between islands. Some areas discharged more than others. For example, the estimated volume of drainage from Terminous Island was 44% to 48% of the total estimated for the surveyed islands during July and August 1987. Terminous and Rindge Tracts, combined, accounted for nearly two-thirds of the estimated discharge during the same period.

The power consumption data gathered represents widely separated areas along the northern and eastern periphery of the Delta. These data cannot be extrapolated to estimate total drainage volumes for the entire Delta. The results of this work showed the variability in drainage on an island due to farm activities.

Table 8. Estimated Pump Station Drainage Volume

Units in acre-feet per month

PUMP STATION	JAN87	FEB87	MAR87	APR87	MAY87	JUN87	JUL 87	AUG87	SEP87	OCT87	NOV87	DEC87	JAN88	FEB88
BOULDIN 01	752	1368	524	297	444	228	355	457	287	90	698	1000000	2543	Ci Cierto I
EGBERT PP1	79	129	167	146	280	478	565	1613	1370	51	54	64	83	51
EGBERT PP2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
KINGISPP01	0	22	0	5	17	18	2	176	0	1				
KINGISPP02	0	0	0	0	0	0	0	0	0	0				
MCCORWILL01	62	43	67	75	101	110	56	24	10	2	7	10	10	
MCCORWILLO2	0	0	17	25	146	205	151	117	42	1	5	7	6	
MOSSDALE01	0	0	0	17	8	13	9	1	0	0				
MOSSDALE02	0	0	0	159	103	176	110	27	9	0				
MOSSDALE03	0	0	0	0	3	8	0	16	0	0				
MOSSDALE04	. 0	2	1	0	7	30	39	40	9	0				
MOSSDALE05	0	0	152	0	153	294	189	182	0	0				
MOSSDALE11	0	0	0	82	70	248	285	102	17	1				
NETHERLANDO1				387	431	382	15	370	614	1101	278	694	1383	
NETHERLANDO2				219	65	0	0	0	33	143	201	97	97	
PROSPECTPP01	0	0	353	353	0	0	0	153	157	10	20	14	55	110
RINDGEPP01	3135	573	203	177	32	218	567	429	284	54				
RINDGEPP02	0	1844	5984	353	416	2899	2119	2841	699	278				
RIOBLANCOO1	128		128	330	13	210	269	200	39	0				
RIOBLANCOO2	0	37			280	277	204	34	6	50	62	77	83	19
TERMPP01	0	13992	1741	170	2	2067	4079	3363	114	0				
TERMPP02	3006	3742	3262	1826	2412	1854	2448	2442	1287	606	706			
UPEGBERTPP01			1230	1161	1307	778	488	340	155	104	88	71	56	
UPEGBERTPP02	0	0	0	0	0	0	0	3	3	0	0	0	0	0
UPJONESPP01	1	31	0	19	2	0	0	0	0	0	0			
UPJONESPP02			704	704	677	1047	1112	1215	760	385				

Estimates based on assumption of 50% pump efficiency rating.

2. 1954-55 Drainage

Monthly estimates of the 1954-55 drainage volumes by study unit (groups of tracts and islands) are shown in Table 9. The estimates were based on pump test data and power use from 162 pumping plants involving 255 pumps that pumped 82 percent of the Lowlands. Estimates for 64 pumps at 14 pumping plants that drained 16 percent of the Lowlands had to be estimated by assuming pump efficiency rating factors were similar to comparable measured sites or by correlation with drainage rates in adjacent areas. The remaining 2 percent of land either drained by gravity or was urbanized. These estimates were then based on drainage rates in adjacent areas.

Drainage volumes can differ significantly among the study units depending on acreage, location, crops, and soil type. The 1954-55 data show that a specific area (14%) of the Delta Lowlands discharged 45% to 48% of the total estimated drainage during June through August and 31% to 34% in December-January. This area, consisting of study units 18, 20, and 22, is shown in Figure 21 and the volumes in Table 10.

Table 9. Monthly 1954-55 Drainage Volume Estimates (acre-feet)

					1954						
UNIT NO.	ACREAGE	м	J	J	A	S	0	N	D		
							170		672		
2	11,202	45	0	0	6.26	224	147	225	387		
3	5,465	639	202	220	200	350	358	1 480	2 541		
5	33,027	510	117	104	60	64	44	183	379		
0	22 102	4 126	2 984	2 227	2 935	2 997	3,932	2.867	1,917		
8	16 095	1 238	1 628	2 074	2 081	1 495	952	696	979		
9	11 095	305	865	1 057	975	350	261	313	486		
10	14 265	1 620	1 697	1 337	1 350	770	530	753	1,383		
12	16 977	2 408	3 144	3 559	2 971	1 450	1.029	1,481	2,916		
12	16 641	886	1 529	2 022	1 602	357	459	529	1,288		
14	14 671	1 730	2 131	2 053	926	648	1,227	1,483	2,166		
15	28 424	2 583	2 463	3 005	2 879	2.055	2,957	3,425	4,851		
10	19 242	2,505	2 434	2 321	3 181	2 147	1.521	1.076	2,804		
17	10,343	092	955	1 379	1 013	739	1,159	1,185	3,597		
10	18 504	4 710	8 676	11 051	8,210	6.748	6,994	4,025	5,759		
10	17 917	2 507	3.570	4.636	4.307	2,688	1,516	1,268	2,753		
20	21 302	5 458	9 197	10,223	10,410	4,627	4,582	5,639	10,209		
21	14 846	3 154	4,000	5,245	4,705	2,698	2,691	3,792	7,388		
22	19 357	12 368	15.756	15.252	12,942	8,629	9,306	8,637	10,635		
23	24 493	2,396	3.032	3,917	3,259	1,974	3,790	3,514	9,308		
24	32 879	2,125	2,500	2,964	2,839	1,849	2,103	2,795	8,907		
25	33,212	2,335	2,197	3,773	2,289	1,237	892	971	3,812		
26	2.810	96	131	144	149	99	88	140	399		
27	10,148	669	627	1,231	949	343	100	60	195		
TOTAL	419,457	55,719	70,573	80,575	70,857	44,557	46,817	46,537	85,731		
AC-FT/DAY		1,857	2,352	2,686	2,362	1,485	1,561	1,551	2,858		
EQUIV CFS		938	1,138	1,356	1,193	750	788	/83	1,443		
		051150.5	1000	-					0.00		
AC-FT/ACR	E	0.13	0.17	0.19	0.17	0.11	0.11	0.11	0.20		
MIN	2,810	45	0	0	0	0	44	1 020	195		
AVG	17.477	2,322	2,941	3,357	2,952	1,857	1,951	1,939	3,572		
MAX	33,212	12,368	15,756	15,252	12,942	8,629	9,306	8,03/	10,635		
					1955	5					
UNIT NO	J	F	м	A	1955 M	j	J	A	S	0	TOTAL
UNIT NO.	J	F	м	A	1955 M	5 J	J	A	S	0	TOTAL
UNIT NO.	J 582	F 90	м 0	A 90	1955 M 0	5 J 0	J	A 0	s O	0 134	TOTAL 739,285
UNIT NO.	J 582 594	F 90 558	м 0 475	A 90 403	1955 M 0 541	5 0 401	J 0 667	A 0 573	S 0 299	0 134 43	TOTAL 739,285 741,223
UNIT NO. 2 3 6	J 582 594 2,944	F 90 558 2,159	M 0 475 771	A 90 403 401	1955 M 0 541 293	5 0 401 235	J 667 314	A 0 573 269	S 0 299 227	0 134 43 320	TOTAL 739,285 741,223 739,975
UNIT NO. 2 3 6 7	J 582 594 2,944 669	F 90 558 2,159 367	M 475 771 221	A 90 403 401 229	1955 M 541 293 259	0 401 235 189	J 667 314 214	A 0 573 269 120	0 299 227 122	0 134 43 320 59	TOTAL 739,285 741,223 739,975 738,677
UNIT NO. 2 3 6 7 8	J 582 594 2,944 669 1,046	F 90 558 2,159 367 1,086	M 475 771 221 1,752	A 90 403 401 229 2,018	1955 M 541 293 259 2,354	0 401 235 189 3,267	J 667 314 214 3,817	A 0 573 269 120 2,830	0 299 227 122 2,411	0 134 43 320 59 1577	TOTAL 739,285 741,223 739,975 738,677 751,724
UNIT NO. 2 3 6 7 8 9	J 582 594 2,944 669 1.046 841	F 90 558 2,159 367 1,086 252	M 475 771 221 1,752 401	A 90 403 401 229 2,018 1,057	1955 M 541 293 259 2,354 742	J 401 235 189 3,267 1,301	0 667 314 214 3,817 1,408	A 573 269 120 2,830 1,647	0 299 227 122 2,411 1,067	0 134 43 320 59 1577 710	TOTAL 739,285 741,223 739,975 738,677 751,724 742,588
UNIT NO. 2 3 6 7 8 9 10	J 582 594 2,944 669 1,046 841 637	F 90 558 2,159 367 1,086 252 352	M 0 475 771 221 1,752 401 245	A 90 403 401 229 2,018 1,057 443	1955 M 541 293 259 2,354 742 535	0 401 235 189 3,267 1,301 757	0 667 314 214 3,817 1,408 874	A 573 269 120 2,830 1,647 860	0 299 227 122 2,411 1,067 624 501	0 134 43 320 59 1577 710 450 417	TOTAL 739,285 741,223 739,975 738,677 751,724 742,588 737,637
UNIT NO. 2 3 6 7 8 9 10 11	J 582 594 2,944 669 1,046 841 637 1,516	F 90 558 2,159 367 1,086 252 352 865	M 475 771 221 1.752 401 245 637	A 90 403 401 229 2,018 1,057 443 889	1955 M 541 293 259 2,354 742 535 792	0 401 235 189 3,267 1,301 757 1,349	0 667 314 214 3,817 1,408 874 1,433	A 0 573 269 120 2,830 1,647 860 1,411	s 299 227 122 2,411 1,067 624 591	0 134 43 320 59 1577 710 450 417 621	T0TAL 739,285 741,223 739,975 738,677 751,724 742,588 737,637 739,196
UNIT NO. 2 3 6 7 8 9 10 11 12	J 582 594 2,944 669 1,046 841 637 1,516 3,105	F 90 558 2,159 367 1,086 252 352 865 1,689	M 475 771 221 1,752 401 245 637 1,690	A 90 403 401 229 2,018 1,057 443 889 2,582	1955 M 541 293 259 2,354 742 535 792 2,171	0 401 235 189 3,267 1,301 757 1,349 3,921 3,921	0 667 314 214 3,817 1,408 874 1,433 3,927 3,927	A 0 573 269 120 2,830 1,647 860 1,411 3,690	s 299 227 122 2.411 1.067 624 591 971	0 134 43 320 59 1577 710 450 417 621 425	T0TAL 739,285 741,223 739,975 738,677 751,724 742,588 737,637 739,196 745,552 730,452
UNIT NO. 2 3 6 7 8 9 10 11 12 13	J 582 594 2,944 669 1,046 841 637 1,516 3,105 1,303	F 90 558 2,159 367 1,086 252 352 865 1,689 777	M 475 771 221 1,752 401 245 637 1,690 767	A 90 403 401 229 2,018 1,057 443 889 2,582 1,081	1955 M 541 293 259 2,354 742 535 792 2,171 964	0 401 235 189 3,267 1,301 757 1,349 3,921 1,575	0 667 314 214 3,817 1,408 874 1,433 3,927 2,356	A 0 573 269 120 2,830 1,647 860 1,411 3,690 2,022	s 299 227 122 2,411 1,067 624 591 971 1,049 545	0 134 43 320 59 1577 710 450 417 621 435 891	T0TAL 739,285 741,223 739,975 738,677 751,724 742,588 737,637 739,196 745,552 739,457 739,380
UNIT NO. 2 3 6 7 8 9 10 11 12 13 14	J 582 594 2,944 669 1,046 841 637 1,516 3,105 1,303 1,961	F 90 558 2,159 367 1,086 252 352 865 1,689 777 1,645	M 0 475 771 221 1.752 401 245 637 1.690 767 1.983	A 90 403 401 229 2,018 1,057 443 889 2,582 1,081 2,307	1955 M 541 293 259 2,354 742 535 792 2,171 964 1,614	0 401 235 189 3,267 1,301 757 1,349 3,921 1,575 1,773	0 667 314 214 3,817 1,408 874 1,433 3,927 2,356 2,264 2,264	A 0 573 269 120 2,830 1,647 860 1,411 3,690 2,022 846 2,309	s 299 227 122 2,411 1,067 624 591 971 1,049 545 2,079	0 134 43 320 59 1577 710 450 417 621 435 891 2021	T0TAL 739,285 741,223 739,975 738,677 751,724 742,588 737,637 739,196 745,552 739,457 739,380 744,620
UNIT NO. 2 3 6 7 8 9 10 11 12 13 14 15	J 582 594 2,944 669 1,046 841 637 1,516 3,105 1,303 1,961 5,721	F 90 558 2,159 367 1,086 252 352 865 1,689 777 1,645 2,871	M 0 475 771 221 1,752 401 245 637 1,690 767 1,983 2,782	A 90 403 401 229 2,018 1,057 443 889 2,582 1,081 2,307 2,544	1955 M 541 293 259 2.354 742 535 792 2.171 964 1.614 1.801	0 401 235 189 3,267 1,301 757 1,349 3,921 1,575 1,773 2,425	0 667 314 214 3,817 1,408 874 1,433 3,927 2,356 2,264 2,805 2,264	A 0 573 269 120 2,830 1,647 860 1,411 3,690 2,022 846 3,398 2,044	S 299 227 122 2,411 1,067 624 591 971 1,049 545 2,079 1,811	0 134 43 320 59 1577 710 450 417 621 435 891 2021 1511	TOTAL 739,285 741,223 739,975 738,677 751,724 742,588 737,637 739,196 745,552 739,457 739,380 744,620 741,794
UNIT NO. 2 3 6 7 8 9 10 11 12 13 14 15 16	J 582 594 2,944 669 1,046 841 637 1,516 3,105 1,303 1,961 5,721 4,008	F 90 558 2,159 367 1,086 252 352 865 1,689 777 1,645 2,871 1,470	M 0 475 771 221 1,752 401 245 637 1,690 767 1,983 2,782 1,041	A 90 403 401 229 2,018 1,057 443 889 2,582 1,081 2,307 2,544 1,854 1,854	1955 M 541 293 259 2,354 742 535 792 2,171 964 1,614 1,801 1,707	0 401 235 189 3,267 1,301 757 1,349 3,921 1,575 1,773 2,425 2,457 2,457	0 667 314 214 3,817 1,408 874 1,433 3,927 2,356 2,264 2,805 2,336 2,000	A 0 573 269 120 2,830 1,647 860 1,411 3,690 2,022 846 3,398 2,044 1,499	S 0 299 227 122 2,411 1,067 624 591 971 1,049 545 2,079 1,811 1 153	0 134 43 320 59 1577 710 450 417 621 435 891 2021 1511 603	TOTAL 739,285 741,223 739,975 738,677 751,724 742,588 737,637 739,196 745,552 739,457 739,380 744,620 741,794 736,465
UNIT NO. 2 3 6 7 8 9 10 11 12 13 14 15 16 17	J 582 594 2,944 669 1,046 841 637 1,516 3,105 1,303 1,961 5,721 4,008 3,198	F 90 558 2.159 367 1.086 252 352 865 1.689 777 1.645 2.871 1.470 1.039	M 0 475 771 221 1,752 401 245 637 1,690 767 1,983 2,782 1,041 1,291	A 90 403 401 229 2,018 1,057 443 889 2,582 1,081 2,307 2,544 1,854 1,854 1,823	1955 M 0 541 293 259 2,354 742 535 792 2,171 964 1,614 1,801 1,707 1,585 2,500	J 401 235 189 3,267 1,301 757 1,349 3,921 1,575 1,773 2,425 2,457 1,613 5,603	J 667 314 214 3,817 1,408 874 1,433 3,927 2,356 2,264 2,805 2,336 2,336 2,000 10,156	A 0 573 269 120 2,830 1,647 860 1,411 3,690 2,022 846 3,398 2,044 1,499 8,081	s 299 227 122 2.411 1.067 624 591 971 1.049 545 2.079 1.811 1.153 3.432	0 134 43 320 59 1577 710 450 417 621 435 891 2021 1511 603 2884	T0TAL 739,285 741,223 739,975 738,677 751,724 742,588 737,637 739,196 745,552 739,457 739,380 744,620 741,794 736,465 761,543
UNIT NO. 2 3 6 7 8 9 10 11 12 13 14 15 16 17 18	J 582 594 2,944 669 1,046 841 637 1,516 3,105 1,303 1,961 5,721 4,008 3,198 4,836	F 90 558 2,159 367 1,086 252 352 865 1,689 777 1,645 2,871 1,470 1,039 2,425	M 0 475 771 221 1,752 401 245 637 1,690 767 1,983 2,782 1,041 1,291 1,942	A 90 403 401 229 2,018 1,057 443 889 2,582 1,081 2,307 2,544 1,854 1,854 1,823 1,439	1955 M 0 541 293 259 2.354 742 535 792 2.171 964 1.614 1.801 1.707 1.585 3.509	0 401 235 189 3,267 1,301 757 1,349 3,921 1,575 1,773 2,425 2,457 1,613 5,603 2,160	U 667 314 214 3,817 1,408 874 1,433 3,927 2,356 2,264 2,805 2,336 2,000 10,156 2,759	A 0 573 269 120 2,830 1,647 860 1,411 3,690 2,022 846 3,398 2,044 1,499 8,081 3,282	s 0 299 227 122 2,411 1,067 624 591 971 1,049 545 2,079 1,811 1,153 3,432 1963	0 134 43 320 59 1577 710 450 417 621 435 891 2021 1511 603 2884 1275	T0TAL 739,285 741,223 739,975 738,677 751,724 742,588 737,637 739,196 745,552 739,457 739,380 744,620 741,794 736,465 761,543 735,587
UNIT NO. 2 3 6 7 8 9 10 11 12 13 14 15 16 17 18 19	J 582 594 2,944 669 1,046 841 637 1,516 3,105 1,303 1,961 5,721 4,008 3,198 4,836 2,454	F 90 558 2,159 367 1,086 252 352 865 1,689 777 1,645 2,871 1,470 1,039 2,425 1,221	M 0 475 771 221 1,752 401 245 637 1,690 767 1,983 2,782 1,041 1,291 1,942 826 2,016	A 90 403 401 229 2,018 1,057 443 889 2,582 1,081 2,582 1,081 2,582 1,081 2,564 1,854 1,854 1,854 1,823 1,439 1,301	1955 M 541 293 259 2,354 742 535 792 2,171 964 1,614 1,614 1,707 1,585 3,509 2,618 6,521	U 401 235 189 3,267 1,301 757 1,349 3,921 1,575 1,773 2,425 2,457 1,613 5,603 3,160	U 667 314 214 3,817 1,408 874 1,433 3,927 2,356 2,264 2,805 2,264 2,805 2,336 2,000 10,156 3,759 11,726	A 0 573 269 120 2,830 1,647 860 1,411 3,690 2,022 846 3,398 2,044 1,499 8,081 3,282 11,870	s 299 227 122 2.411 1.067 624 591 971 1.049 545 2.079 1.811 1.153 3.432 1.963 8.521	0 134 43 320 59 1577 710 450 417 621 435 891 2021 1511 603 2884 1275 3505	T0TAL 739,285 741,223 739,975 738,677 751,724 742,588 737,637 739,196 745,552 739,457 739,380 744,620 741,794 736,465 761,543 735,587 763,967
UNIT NO. 2 3 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	J 582 594 2,944 669 1,046 841 637 1,516 3,105 1,303 1,961 5,721 4,008 3,198 4,836 2,454 14,637	F 90 558 2,159 367 1,086 252 352 865 1,689 777 1,645 2,871 1,470 1,039 2,425 1,221 3,840	M 0 475 771 221 1,752 401 245 637 1,690 767 1,983 2,782 1,041 1,291 1,942 826 2,016 1,925	A 90 403 401 229 2,018 1,057 443 889 2,582 1,081 2,307 2,544 1,854 1,823 1,439 1,301 3,533 2,250	1955 M 541 293 259 2,354 742 535 792 2,171 964 1,614 1,801 1,707 1,585 3,509 2,618 6,521 3,873	U 401 235 189 3,267 1,301 757 1,349 3,921 1,575 1,773 2,425 2,457 1,613 5,603 3,160 10,456 5,340	U 667 314 214 3,817 1,408 874 1,433 3,927 2,356 2,264 2,805 2,264 2,805 2,336 2,000 10,156 3,759 11,726 5,398	A 0 573 269 120 2,830 1,647 860 1,411 3,690 2,022 846 3,398 2,044 1,499 8,081 3,282 11,870 4,576	s 299 227 122 2.411 1.067 624 591 971 1.049 545 2.079 1.811 1.153 3.432 1.963 8.521 3.392	0 134 43 320 59 1577 710 450 417 621 435 891 2021 1511 603 2884 1275 3505 2175	T0TAL 739,285 741,223 739,975 738,677 751,724 742,588 737,637 739,196 745,552 739,457 739,380 744,620 741,794 736,465 761,543 735,587 763,957 744,925
UNIT NO. 2 3 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	J 582 594 2,944 669 1,046 841 637 1,516 3,105 1,303 1,961 5,721 4,008 3,198 4,836 2,454 14,637 7,472	F 90 558 2,159 367 1,086 252 352 865 1,689 777 1,645 2,871 1,470 1,039 2,425 1,221 3,840 2,765	M 0 475 771 221 1,752 401 245 637 1,690 767 1,983 2,782 1,041 1,291 1,942 826 2,016 1,935	A 90 403 401 229 2,018 1,057 443 889 2,582 1,081 2,307 2,544 1,854 1,854 1,854 1,853 1,439 1,301 3,533 2,350	1955 M 541 293 259 2,354 742 535 792 2,171 964 1,614 1,801 1,707 1,585 3,509 2,618 6,521 3,873	U 401 235 189 3,267 1,301 757 1,349 3,921 1,575 1,773 2,425 2,457 1,613 5,603 3,160 10,456 5,340	J 667 314 214 3,817 1,408 874 1,433 3,927 2,356 2,264 2,805 2,336 2,000 10,156 3,759 11,726 5,398	A 0 573 269 120 2,830 1,647 860 1,411 3,690 2,022 846 3,398 2,044 1,499 8,081 3,282 11,870 4,576	s 299 227 122 2,411 1,067 624 591 971 1,049 545 2,079 1,811 1,153 3,432 1,963 8,521 3,392	0 134 43 320 59 1577 710 450 417 621 435 891 2021 1511 603 2884 1275 3505 2175	T0TAL 739,285 741,223 739,975 738,677 751,724 742,588 737,637 739,196 745,552 739,457 739,380 744,620 741,794 736,465 761,543 735,587 763,957 744,925
UNIT NO. 2 3 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	J 582 594 2,944 669 1,046 841 637 1,516 3,105 1,303 1,961 5,721 4,008 3,198 4,836 2,454 14,637 7,472	F 90 558 2,159 367 1,086 252 352 865 1,689 777 1,645 2,871 1,470 1,039 2,425 1,221 3,840 2,765 7,385	M 0 475 771 221 1,752 401 245 637 1,690 767 1,983 2,782 1,041 1,291 1,942 826 2,016 1,935 5,127	A 90 403 401 229 2,018 1,057 443 889 2,582 1,081 2,307 2,544 1,854 1,854 1,854 1,439 1,301 3,533 2,350	1955 M 541 293 259 2,354 742 535 792 2,171 964 1,614 1,707 1,585 3,509 2,618 6,521 3,873	U 401 235 189 3,267 1,301 757 1,349 3,921 1,575 1,773 2,425 2,457 1,613 5,603 3,160 10,456 5,340	J 667 314 214 3,817 1,408 874 1,433 3,927 2,356 2,264 2,356 2,264 2,356 2,366 2,366 2,366 2,366 2,000 10,156 3,759 11,726 5,398	A 0 573 269 120 2,830 1,647 860 1,411 3,690 2,022 846 3,398 2,044 1,499 8,081 3,282 11,870 4,576	s 0 299 227 122 2,411 1,067 624 591 971 1,049 545 2,079 1,811 1,153 3,432 1,963 8,521 3,392 6,142	0 134 43 320 59 1577 710 450 417 621 435 891 2021 1511 603 2884 1275 3505 2175 5302	T0TAL 739,285 741,223 739,975 738,677 751,724 742,588 737,637 739,196 745,552 739,457 739,380 744,620 741,794 736,465 761,543 735,587 763,957 744,925 781,812
UNIT NO. 2 3 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22	J 582 594 2,944 669 1,046 841 637 1,516 3,105 1,303 1,961 5,721 4,008 3,198 4,836 2,8454 14,637 7,472	F 90 558 2.159 367 1.086 252 352 865 1.689 777 1.645 2.871 1.470 1.039 2.425 1.221 3.840 2.765 7.385	M 0 475 771 221 1.752 401 245 637 1.690 767 1.983 2.782 1.041 1.291 1.942 826 2.016 1.935 5.127 2.103	A 90 403 401 229 2,018 1,057 443 889 2,582 1,081 2,307 2,544 1,854 1,823 1,439 1,301 3,533 2,350 3,949 1,843	1955 M 541 293 259 2,354 742 535 792 2,171 964 1,614 1,801 1,707 1,585 3,509 2,618 6,521 3,873 10,734 2,018	U 401 235 189 3,267 1,301 757 1,349 3,921 1,575 1,773 2,425 2,457 1,613 5,603 3,160 10,456 5,340 16,862 2,481	J 667 314 214 3,817 1,408 874 1,433 3,927 2,356 2,264 2,805 2,336 2,000 10,156 3,759 11,726 5,398 15,557 2,056	A 0 573 269 120 2,830 1,647 860 1,411 3,690 2,022 846 3,398 2,044 1,499 8,081 3,282 11,870 4,576 12,826 2,818	s 0 299 227 122 2,411 1,067 624 591 971 1,049 545 2,079 1,811 1,153 3,432 1,963 8,521 3,392 6,142 1,663	0 134 43 320 59 1577 710 450 417 621 435 891 2021 1511 603 2884 1275 3505 2175 5302 1981	T0TAL 739,285 741,223 739,975 738,677 751,724 742,584 737,637 739,196 745,552 739,457 739,380 744,620 741,794 736,465 761,543 735,587 763,957 744,925 781,812 727,864
UNIT NO. 2 3 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	J 582 594 2.944 669 1.046 841 637 1.516 3.105 1.303 1.961 5.721 4.008 3.198 4.836 2.454 14.637 7.472 12.773 11.828 2.994	F 90 558 2,159 367 1,086 252 352 865 1,689 777 1,645 2,871 1,470 1,039 2,425 1,221 3,840 2,765 7,385 3,229 3,410	M 0 475 771 221 1,752 401 245 637 1,690 767 1,983 2,782 1,041 1,291 1,942 826 2,016 1,935 5,127 2,103 2,053	A 90 403 401 229 2,018 1,057 443 889 2,582 1,081 2,307 2,544 1,854 1,854 1,823 1,439 1,301 3,533 2,350 3,949 1,843 2,135	1955 M 0 541 293 259 2,354 742 535 792 2,171 964 1,614 1,801 1,707 1,585 3,509 2,618 6,521 3,873 10,734 2,018 2,355	U 401 235 189 3,267 1,301 757 1,349 3,921 1,575 1,773 2,425 2,457 1,613 5,603 3,160 10,456 5,340 16,862 2,481 2,649	J 667 314 214 3,817 1,408 874 1,433 3,927 2,356 2,264 2,805 2,336 2,264 2,805 2,336 2,000 10,156 3,759 11,726 5,398 15,557 2,056 2,862	A 0 573 269 120 2,830 1,647 860 1,411 3,690 2,022 846 3,398 2,044 1,499 8,081 3,282 11,870 4,576 12,826 2,818 2,929	s 0 299 227 122 2.411 1.067 624 591 971 1.049 545 2.079 1.811 1.153 3.432 1.963 8.521 3.392 6.142 1.663 2.285	0 134 43 320 59 1577 710 450 417 621 435 891 2021 1511 603 2884 1275 3505 2175 5302 1981 1974	T0TAL 739,285 741,223 739,975 738,677 751,724 742,588 737,637 739,196 745,552 739,457 739,380 744,620 741,794 736,465 761,543 735,587 763,957 744,925 781,812 727,864 725,985
UNIT NO. 2 3 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 25 25 25 25 25 25 25 25 25	J 582 594 2,944 669 1,046 841 637 1,516 3,105 1,303 1,961 5,721 4,008 3,198 4,836 2,454 14,637 7,472 12,773 11,828 9,189 2,278	F 90 558 2.159 367 1.086 252 352 865 1.689 777 1.645 2.871 1.470 1.039 2.425 1.221 3.840 2.765 7.385 3.229 3.410	M 0 475 771 221 1,752 401 245 637 1,690 767 1,983 2,782 1,041 1,291 1,942 826 2,016 1,935 5,127 2,103 2,053 1,958	A 90 403 401 229 2,018 1,057 443 889 2,582 1,081 2,307 2,544 1,854 1,854 1,854 1,823 1,439 1,301 3,533 2,350 3,949 1,843 2,135 2,540	1955 M 0 541 293 259 2.354 742 535 792 2.171 964 1.614 1.707 1.585 3.509 2.618 6.521 3.873 10.734 2.018 2.355 2.233	U 401 235 189 3,267 1,301 757 1,349 3,921 1,575 1,773 2,425 2,457 1,613 5,603 3,160 10,456 5,340 16,862 2,481 12,649 2,553	J 667 314 214 3,817 1,408 874 1,433 3,927 2,356 2,264 2,805 2,366 2,264 2,805 10,156 3,759 11,726 5,398 15,557 2,056 2,862 3,574	A 0 573 269 120 2,830 1,647 860 1,411 3,690 2,022 846 3,398 2,044 1,499 8,081 3,282 11,870 4,576 12,826 2,818 2,929 3,217	s 0 299 227 122 2,411 1,067 624 591 971 1,049 545 2,079 1,811 1,153 3,432 1,963 8,521 3,392 6,142 1,663 2,285 2,068	0 134 43 320 59 1577 710 450 417 621 435 891 2021 1511 603 2884 1275 3505 2175 5302 1981 1974 922	T0TAL 739,285 741,223 739,975 738,677 751,724 742,588 737,637 739,196 745,552 739,457 739,380 744,620 741,794 736,465 761,543 735,587 763,957 763,957 764,925 781,812 727,864 725,985 766,042
UNIT NO. 2 3 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	J 582 594 2,944 669 1,046 841 637 1,516 3,105 1,303 1,961 5,721 4,008 3,198 4,836 2,454 14,637 7,472 12,773 11,828 9,189 3,678 4,221	F 90 558 2.159 367 1.086 252 352 865 1.689 777 1.645 2.871 1.470 1.039 2.425 1.221 3.840 2.765 7.385 3.229 3.410 2.188	M 0 475 771 221 1,752 401 245 637 1,690 767 1,983 2,782 1,041 1,291 1,942 826 2,016 1,935 5,127 2,103 2,053 1,958 2,22	A 90 403 401 229 2,018 1,057 443 889 2,582 1,081 2,307 2,544 1,854 1,854 1,854 1,854 1,854 1,301 3,533 2,350 3,949 1,843 2,135 2,540 95	1955 M 0 541 293 259 2,354 742 535 792 2,171 964 1,614 1,707 1,585 3,509 2,618 6,521 3,873 10,734 2,018 2,355 2,233 107	U 401 235 189 3,267 1,301 757 1,349 3,921 1,575 1,773 2,425 2,457 1,613 5,603 3,160 10,456 5,340 16,862 2,481 2,649 2,553 133	J 667 314 214 3,817 1,408 874 1,433 3,927 2,356 2,264 2,805 2,336 2,000 10,156 3,759 11,726 5,398 15,557 2,056 2,862 3,574 155	A 0 573 269 120 2,830 1,647 860 1,411 3,690 2,022 846 3,398 2,044 1,499 8,081 3,282 11,870 4,576 12,826 2,818 2,929 3,217 153	s 0 299 227 122 2,411 1,067 624 591 971 1,049 545 2,079 1,811 1,153 3,432 1,963 8,521 3,392 6,142 1,663 2,285 2,068 113	0 134 43 320 59 1577 710 450 417 621 435 891 2021 1511 603 2884 1275 3505 2175 5302 1981 1974 922 93	T0TAL 739,285 741,223 739,975 738,677 751,724 742,588 737,637 739,196 745,552 739,457 739,380 744,620 741,794 736,465 761,543 735,587 763,957 744,925 781,812 727,864 725,985 726,042 714,858
UNIT NO. 2 3 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	J 582 594 2,944 669 1,046 841 637 1,516 3,105 1,303 1,961 5,721 4,008 3,198 4,836 2,454 14,637 7,472 12,773 11,828 9,189 3,678 412 264	F 90 558 2,159 367 1,086 252 352 865 1,689 777 1,645 2,871 1,470 1,039 2,425 1,221 3,840 2,765 7,385 3,229 3,410 2,188 150 127	M 0 475 771 221 1,752 401 245 637 1,690 767 1,983 2,782 1,041 1,291 1,942 826 2,016 1,935 5,127 2,103 2,053 1,958 92 311	A 90 403 401 229 2,018 1,057 443 889 2,582 1,081 2,307 2,544 1,854 1,823 1,439 1,301 3,533 2,350 3,949 1,843 2,135 2,540 3,949	1955 M 0 541 293 259 2.354 742 535 792 2.171 964 1.614 1.801 1.707 1.585 3.509 2.618 6.521 3.873 10,734 2.018 2.355 2.233 107 487	J 401 235 189 3,267 1,301 757 1,349 3,921 1,575 1,773 2,425 2,457 1,613 5,603 3,160 10,456 5,340 16,862 2,481 2,649 2,553 133 584	J 667 314 214 3,817 1,408 874 1,433 3,927 2,356 2,264 2,805 2,264 2,805 2,336 2,000 10,156 3,759 11,726 5,398 15,557 2,056 2,862 3,574 155 948	A 0 573 269 120 2,830 1,647 860 1,411 3,690 2,022 846 3,398 2,044 1,499 8,081 3,282 11,870 4,576 12,826 2,818 2,929 3,217 153 1,209	s 0 299 227 122 2.411 1.067 624 591 971 1.049 545 2.079 1.811 1.153 3.432 1.963 8.521 3.392 6.142 1.663 2.285 2.068 113 588	0 134 43 320 59 1577 710 450 417 621 435 891 2021 1511 603 2884 1275 3505 2175 5302 1981 1974 922 93 114	T0TAL 739,285 741,223 739,975 738,677 751,724 742,588 737,637 739,196 745,552 739,457 739,457 739,457 739,457 739,457 739,457 739,457 739,457 739,457 739,457 739,457 739,457 739,457 744,925 781,812 727,864 725,985 726,042 714,858 717,682
UNIT NO. 2 3 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	J 582 594 2,944 669 1,046 841 637 1,516 3,105 1,303 1,961 5,721 4,008 3,198 4,836 2,454 14,637 7,472 12,773 11,828 9,189 3,678 412 264	F 90 558 2,159 367 1,086 252 352 865 1,689 777 1,645 2,871 1,470 1,039 2,425 1,221 3,840 2,765 7,385 3,229 3,410 2,188 150 127	M 0 475 771 221 1,752 401 245 637 1,690 767 1,983 2,782 1,041 1,291 1,942 826 2,016 1,935 5,127 2,103 2,053 1,958 92 311	A 90 403 401 229 2,018 1,057 443 889 2,582 1,081 2,307 2,544 1,854 1,823 1,439 1,301 3,533 2,350 3,949 1,843 2,135 2,540 95 722	1955 M 0 541 293 259 2.354 742 535 792 2.171 964 1.614 1.801 1.707 1.585 3.509 2.618 6.521 3.873 10.734 2.018 2.355 2.233 107 487	J 401 235 189 3,267 1,301 757 1,349 3,921 1,575 1,773 2,425 2,457 1,613 5,603 3,160 10,456 5,340 16,862 2,481 2,649 2,553 133 584	J 0 667 314 214 3,817 1,408 874 1,433 3,927 2,356 2,264 2,805 2,264 2,805 2,336 2,000 10,156 3,759 11,726 5,398 15,557 2,056 2,862 3,574 155 948	A 0 573 269 120 2,830 1,647 860 1,411 3,690 2,022 846 3,398 2,044 1,499 8,081 3,282 11,870 4,576 12,826 2,818 2,929 3,217 153 1,209	s 0 299 227 122 2.411 1.067 624 591 971 1.049 545 2.079 1.811 1.153 3.432 1.963 8.521 3.392 6.142 1.663 2.285 2.068 113 588	0 134 43 320 59 1577 710 450 417 621 435 891 2021 1511 603 2884 1275 3505 2175 5302 1981 1974 922 93 114	T0TAL 739,285 741,223 739,975 738,677 751,724 742,588 737,637 739,196 745,552 739,457 739,380 744,620 741,794 736,465 761,543 735,587 763,957 744,925 781,812 727,864 725,985 726,042 714,858 717,682
UNIT NO. 2 3 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 TOTAL	J 582 594 2,944 669 1,046 841 637 1,516 3,105 1,303 1,961 5,721 4,008 3,198 4,836 2,454 14,637 7,472 12,773 11,828 9,189 3,678 412 264	F 90 558 2,159 367 1,086 252 352 865 1,689 777 1,645 2,871 1,470 1,039 2,425 1,221 3,840 2,765 7,385 3,229 3,410 2,188 150 1,27	M 0 475 771 221 1,752 401 245 637 1,690 767 1,983 2,782 1,041 1,983 2,782 1,041 1,942 826 2,016 1,935 5,127 2,103 2,053 1,958 92 311 32,419	A 90 403 401 229 2,018 1,057 443 889 2,582 1,081 2,307 2,544 1,854 1,823 1,439 1,301 3,533 2,350 3,949 1,843 2,135 2,540 95 722 37,628	1955 M 0 541 293 259 2,354 742 535 792 2,171 964 1,614 1,801 1,707 1,585 3,509 2,618 6,521 3,873 10,734 2,018 2,355 2,233 107 487 49,813	J 0 401 235 189 3,267 1,301 757 1,349 3,921 1,575 1,773 2,425 2,457 1,613 5,603 3,160 10,456 5,340 16,862 2,481 2,649 2,553 133 584 71,084	J 0 667 314 214 3,817 1,408 874 1,433 3,927 2,356 2,264 2,805 2,264 2,805 2,336 2,000 10,156 3,759 11,726 5,398 15,557 2,056 2,862 3,574 155 948 80,606	A 0 573 269 120 2,830 1,647 860 1,411 3,690 2,022 846 3,398 2,044 1,499 8,081 3,282 11,870 4,576 12,826 2,818 2,929 3,217 153 1,209 72,170	s 0 299 227 122 2.411 1.067 624 591 971 1.049 545 2.079 1.811 1.153 3.432 1.963 8.521 3.392 6.142 1.663 2.285 2.068 113 588 43.116	0 134 43 320 59 1577 710 450 417 621 435 891 2021 1511 603 2884 1275 3505 2175 5302 1981 1974 922 93 114 30017 1	T0TAL 739,285 741,223 739,975 738,677 751,724 742,588 737,637 739,196 745,552 739,457 739,380 744,620 741,794 736,465 761,543 735,587 763,957 744,925 781,812 727,864 725,985 726,042 714,858 717,682
UNIT NO. 2 3 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 TOTAL AC-FT/DAY	J 582 594 2,944 669 1,046 841 637 1,516 3,105 1,303 1,961 5,721 4,008 3,198 4,836 2,454 14,637 7,472 12,773 11,828 9,189 3,678 412 264	F 90 558 2,159 367 1,086 252 352 865 1,689 777 1,645 2,871 1,470 1,039 2,425 1,221 3,840 2,765 7,385 3,229 3,410 2,188 150 127 41,960 1,399	M 0 475 771 221 1,752 401 245 637 1,690 767 1,983 2,782 1,041 1,942 826 2,016 1,935 5,127 2,103 2,053 1,958 92 311 32,419 1,081	A 90 403 401 229 2,018 1,057 443 889 2,582 1,081 2,307 2,544 1,854 1,823 1,439 1,301 3,533 2,350 3,949 1,843 2,135 2,540 95 722 37,628 1,254	1955 M 0 541 293 259 2,354 742 535 792 2,171 964 1,614 1,707 1,585 3,509 2,618 6,521 3,873 10,734 2,018 2,355 2,233 107 487 49,813 1,660	J 0 401 235 189 3,267 1,301 757 1,349 3,921 1,575 1,773 2,425 2,457 1,613 5,603 3,160 10,456 5,340 16,862 2,481 2,649 2,553 133 584 71,084 2,369	J 0 667 314 214 3,817 1,408 874 1,433 3,927 2,356 2,264 2,805 2,366 2,000 10,156 3,759 11,726 5,398 15,557 2,056 2,862 3,574 155 948 80,606 2,687	A 0 573 269 120 2,830 1,647 860 1,411 3,690 2,022 846 3,398 2,044 1,499 8,081 3,282 11,870 4,576 12,826 2,818 2,929 3,217 153 1,209 72,170 2,406	s 0 299 227 122 2,411 1,067 624 591 971 1,049 545 2,079 1,811 1,153 3,432 1,963 8,521 3,392 6,142 1,663 2,285 2,068 113 588 43,116 1,437	0 134 43 320 59 1577 710 450 417 621 435 891 2021 1511 603 2884 1275 3505 2175 5302 1981 1974 922 93 114 30017 1 1,001	T0TAL 739,285 741,223 739,975 738,677 751,724 742,588 737,637 739,196 745,552 739,457 739,380 744,620 741,794 736,465 761,543 735,587 763,957 744,925 781,812 727,864 725,985 726,042 714,858 717,682
UNIT NO. 2 3 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 TOTAL AC-FT/DAY	J 582 594 2,944 669 1,046 841 637 1,516 3,105 1,303 1,961 5,721 4,008 3,198 4,836 2,454 14,637 7,472 12,773 11,828 9,189 3,678 412 264 95,668 3,189 1,891	F 90 558 2,159 367 1,086 252 352 865 1,689 777 1,645 2,871 1,470 1,039 2,425 1,221 3,840 2,765 7,385 3,229 3,410 2,188 150 127 41,960 1,399 706	M 0 475 771 221 1,752 401 245 637 1,690 767 1,983 2,782 1,041 1,291 1,942 826 2,016 1,935 5,127 2,103 2,053 1,958 92 311 32,419 1,081 546	A 90 403 401 229 2,018 1,057 443 889 2,582 1,081 2,307 2,544 1,854 1,823 1,439 1,301 3,543 2,350 3,949 1,843 2,135 2,540 95 722 37,628 1,254 633	1955 M 0 541 293 259 2,354 742 535 792 2,171 964 1,614 1,801 1.707 1,585 3,509 2,618 6,521 3,873 10,734 2,018 2,355 2,233 107 487 49,813 1,660 839	J 0 401 235 189 3,267 1,301 757 1,349 3,921 1,575 1,773 2,425 2,457 1,613 5,603 3,160 10,456 5,340 16,862 2,481 2,649 2,553 133 584 71,084 2,369 1,197	J 0 667 314 214 3,817 1,408 874 1,433 3,927 2,356 2,264 2,805 2,356 2,264 2,805 2,356 2,264 2,805 2,356 2,264 2,805 2,356 2,356 2,557 1,726 5,398 15,557 2,056 2,862 3,574 155 948 80,606 2,687 1,357	A 0 573 269 120 2,830 1,647 860 1,411 3,690 2,022 846 3,398 2,044 1,499 8,081 3,282 11,870 4,576 12,826 2,818 2,929 3,217 153 1,209 72,170 2,406 1,215	s 0 299 227 122 2.411 1.067 624 591 971 1.049 545 2.079 1.811 1.153 3.432 1.963 8.521 3.392 6.142 1.663 2.285 2.068 113 588 43.116 1.437 726	0 134 43 320 59 1577 710 450 417 621 435 891 2021 1511 603 2884 1275 3505 2175 5302 1981 1974 922 93 114 30017 1 1,001 505	T0TAL 739,285 741,223 739,975 738,677 751,724 742,588 737,637 739,196 745,552 739,457 739,380 744,620 741,794 736,465 761,543 735,587 763,957 744,925 781,812 727,864 725,985 763,957 744,925 781,812 727,62,042 714,858 717,682
UNIT NO. 2 3 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 TOTAL AC-FT/DAY EQUIV CFS	J 582 594 2,944 669 1,046 841 637 1,516 3,105 1,303 1,961 5,721 4,008 3,198 4,836 2,454 14,637 7,472 12,773 11,828 9,189 3,678 412 264 95,668 3,189 1,611	F 90 558 2,159 367 1,086 252 352 865 1,689 777 1,645 2,871 1,470 1,039 2,425 1,221 3,840 2,765 7,385 3,229 3,410 2,188 150 127 41,960 1,399 706	M 0 475 771 221 1,752 401 245 637 1,690 767 1,983 2,782 1,041 1,291 1,942 826 2,016 1,935 5,127 2,103 2,053 1,958 92 311 32,419 1,081 546	A 90 403 401 229 2,018 1,057 443 889 2,582 1,081 2,307 2,544 1,854 1,854 1,854 1,823 1,439 1,301 3,533 2,350 3,949 1,843 2,135 2,540 95 722 37,628 1,254 633	1955 M 0 541 293 259 2,354 742 535 792 2,171 964 1,614 1,801 1.707 1,585 3,509 2,618 6,521 3,873 10,734 2,018 2,355 2,233 107 487 49,813 1,660 839	J 0 401 235 189 3,267 1,301 757 1,349 3,921 1,575 1,773 2,425 2,457 1,613 5,603 3,160 10,456 5,340 16,862 2,481 2,649 2,553 133 584 71,084 2,369 1,197	J 0 667 314 214 3,817 1,408 874 1,433 3,927 2,356 2,264 2,805 2,336 2,264 2,805 2,336 2,264 2,805 2,336 2,264 2,805 2,336 2,000 10,156 3,759 11,726 5,398 15,557 2,056 2,862 3,574 155 948 80,606 2,687 1,357	A 0 573 269 120 2,830 1,647 860 1,411 3,690 2,022 846 3,398 2,044 1,499 8,081 3,282 11,870 4,576 12,826 2,818 2,929 3,217 153 1,209 72,170 2,406 1,215	s 0 299 227 122 2.411 1.067 624 591 971 1.049 545 2.079 1.811 1.153 3.432 1.963 8.521 3.392 6.142 1.663 2.285 2.068 113 588 43.116 1.437 726	0 134 43 59 1577 710 450 417 621 435 891 2021 1511 603 2884 1275 3505 2175 5302 1981 1974 922 93 114 30017 1 1,001 505	T0TAL 739,285 741,223 739,975 738,677 751,724 742,588 737,637 739,196 745,552 739,450 744,620 741,794 739,380 744,620 741,794 735,557 763,957 763,957 763,957 763,957 763,957 764,955 764,955 764,955 764,955 764,955 764,955 764,955 764,955 764,955 764,955 764,955 764,955 764,955 764,955 765,975 764,955 765,975 764,955 765,975 764,955 765,975 765,975 774,955 775,9555 775,9555 775,95555 775,955557 7755,95557757575757575757
UNIT NO. 2 3 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 TOTAL AC-FT/DAY EQUIV CFS AC-FT/ACR	J 582 594 2,944 669 1,046 841 637 1,516 3,105 1,303 1,961 5,721 4,008 3,198 4,836 2,454 14,637 7,472 12,773 11,828 9,189 3,678 412 264 95,668 3,189 1,611 0,23	F 90 558 2.159 367 1.086 252 352 865 1.689 777 1.645 2.871 1.470 1.039 2.425 1.221 3.840 2.765 7.385 3.229 3.410 2.188 150 127 41,960 1.399 706 0.10	M 0 475 771 221 1,752 401 245 637 1,690 767 1,983 2,782 1,041 1,291 1,942 826 2,016 1,935 5,127 2,103 2,053 1,935 5,127 2,103 2,053 1,935 5,127 2,103 2,053 1,935 5,127 2,103 2,053 1,935 5,127 2,103 2,053 1,935 5,127 2,103 2,053 1,935 5,127 2,103 2,053 1,935 5,127 2,103 2,053 1,935 5,127 2,103 2,053 1,935 5,127 2,103 2,053 1,935 5,127 2,103 2,053 1,935 5,127 2,103 2,053 1,935 5,127 2,103 2,053 1,935 2,053 1,081 2,081 2,053 1,081 2,053 1,081 2,081 2,081 2,053 1,081 2,081 2,081 2,053 1,081 2,081 2,081 2,081 2,082 2,082 2,082 2,082 2,082 2,082 2,082 2,082 2,082 2,082 2,082 2,082 2,092 2,082 2,082 2,082 2,082 2,082 2,082 2,092 2,000 2,092 2,000 2,002 2,002 2,002 2,002 2,002 2,002 2,002 2,002 2,002 2,002 2,002,	A 90 403 401 229 2,018 1,057 443 889 2,582 1,081 2,307 2,544 1,854 1,854 1,854 1,854 1,854 1,854 1,301 3,533 2,350 3,949 1,843 2,135 2,540 95 722 37,628 1,254 633 0.09	1955 M 0 541 293 259 2,354 742 535 792 2,171 964 1,614 1,801 1.707 1,585 3,509 2,618 6,521 3,873 10,734 2,018 2,355 2,233 107 487 49,813 1,660 839 0,12	J 0 401 235 189 3,267 1,301 757 1,349 3,921 1,575 1,773 2,425 2,457 1,613 5,603 3,160 10,456 5,340 16,862 2,481 2,649 2,553 133 584 71,084 2,369 1,197 0,17	J 0 667 314 214 3,817 1,408 874 1,433 3,927 2,356 2,264 2,805 2,336 2,264 2,805 2,336 2,264 2,805 2,336 2,264 2,805 2,356 2,357 1,726 5,398 15,557 2,862 3,574 155 948 80,606 2,687 1,357 0,19	A 0 573 269 120 2,830 1,647 860 1,411 3,690 2,022 846 3,398 2,044 1,499 8,081 3,282 11,870 4,576 12,826 2,818 2,929 3,217 153 1,209 72,170 2,406 1,215 0,17	s 0 299 227 122 2.411 1.067 624 591 971 1.049 545 2.079 1.811 1.153 3.432 1.963 8.521 3.392 6.142 1.663 2.285 2.068 113 588 43.116 1.437 726 0.10	0 134 43 320 59 1577 710 450 417 621 435 891 2021 1511 603 2884 1275 3505 2175 5302 1981 1974 922 93 114 30017 1 1,001 505 0.077	T0TAL 739,285 741,223 739,975 738,677 751,724 742,588 737,637 739,196 745,552 739,457 739,380 744,620 741,794 739,380 744,620 741,794 739,380 744,620 741,794 736,465 763,957 744,925 781,812 727,864 725,985 726,042 714,858 717,682
UNIT NO. 2 3 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 TOTAL AC-FT/DAY EQUIV CFS AC-FT/ACR MIN	J 582 594 2,944 669 1,046 841 637 1,516 3,105 1,303 1,961 5,721 4,008 3,198 4,836 2,454 14,637 7,472 12,773 11,828 9,189 3,678 412 264 95,668 3,189 1,611 0,23 264	F 90 558 2,159 367 1,086 252 352 865 1,689 777 1,645 2,871 1,470 1,039 2,425 1,221 3,840 2,765 7,385 3,229 3,410 2,188 150 127 41,960 1,399 706 0,10 90	M 0 475 771 221 1,752 401 245 637 1,690 767 1,983 2,782 1,041 1,291 1,942 826 2,016 1,935 5,127 2,103 2,053 1,958 92 311 32,419 1,081 546 0,08 0	A 90 403 401 229 2,018 1,057 443 889 2,582 1,081 2,307 2,544 1,854 1,854 1,854 1,854 1,854 1,854 1,301 3,533 2,350 3,949 1,843 2,135 2,540 95 722 37.628 1,254 633 0.09 90	1955 M 0 541 293 259 2,354 742 535 792 2,171 964 1,614 1,801 1,707 1,585 3,509 2,618 6,521 3,873 10,734 2,018 2,355 2,233 107 487 49,813 1,660 839 0,12 0	J 0 401 235 189 3,267 1,301 757 1,349 3,921 1,575 1,773 2,425 2,457 1,613 5,603 3,160 10,456 5,340 16,862 2,481 2,649 2,553 133 584 71,084 2,369 1,197 0,17 0	J 0 667 314 214 214 3,817 1,408 874 1,433 3,927 2,356 2,264 2,805 2,336 2,000 10,156 3,759 11,726 5,398 15,557 2,056 2,862 3,574 155 948 80,606 2,687 1,357 0,19 0	A 0 573 269 120 2.830 1.647 860 1.411 3.690 2.022 846 3.398 2.044 1.499 8.081 3.282 11.870 4.576 12.826 2.818 2.929 3.217 153 1.209 72.170 2.406 1.215 0.17 0	s 0 299 227 122 2.411 1.067 624 591 971 1.049 545 2.079 1.811 1.153 3.432 1.963 8.521 3.392 6.142 1.663 2.285 2.068 113 588 43.116 1.437 726 0.10 0	0 134 43 320 59 1577 710 450 417 621 435 891 2021 1511 603 2884 1275 3505 2175 5302 1981 1974 922 93 114 30017 1 1,001 505 0.07 435 435 0.07	T0TAL 739,285 741,223 739,975 738,677 751,724 742,588 737,637 739,196 745,552 739,457 739,380 744,620 741,794 736,465 761,543 735,587 763,957 763,957 764,925 781,812 727,864 725,985 726,042 714,858 717,682
UNIT NO. 2 3 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 TOTAL AC-FT/DAY EQUIV CFS AC-FT/ACR MIN AVG	J 582 594 2,944 669 1,046 841 637 1,516 3,105 1,303 1,961 5,721 4,008 3,198 4,836 2,454 14,637 7,472 12,773 11,828 9,189 3,678 412 264 95,668 3,189 1,611 0,23 264 3,986	F 90 558 2,159 367 1,086 252 352 865 1,689 777 1,645 2,871 1,470 1,039 2,425 1,221 3,840 2,765 7,385 3,229 3,410 2,188 150 1,27 41,960 1,399 706 0,10 90 1,748	M 0 475 771 221 1,752 401 245 637 1,690 767 1,983 2,782 1,041 1,291 1,942 826 2,016 1,935 5,127 2,103 2,053 1,958 92 311 32,419 1,081 546 0.08 0 1,351	A 90 403 401 229 2,018 1,057 443 889 2,582 1,081 2,307 2,544 1,854 1,854 1,823 1,439 1,301 3,533 2,350 3,949 1,843 2,350 3,949 1,843 2,350 3,949 1,843 2,350 3,949 1,843 2,540 95 722 37,628 1,254 633 0,09 90 1,568	1955 M 0 541 293 259 2,354 742 535 792 2,171 964 1,614 1,801 1,707 1,585 3,509 2,618 6,521 3,873 10,734 2,018 2,355 2,233 107 487 49,813 1,660 839 0,12 0 2,076	J 0 401 235 189 3,267 1,301 757 1,349 3,921 1,575 1,773 2,425 2,457 1,613 5,603 3,160 10,456 5,340 16,862 2,481 2,649 2,553 133 584 71,084 2,369 1,197 0,17 0,2962	J 0 667 314 214 214 3,817 1,408 874 1,433 3,927 2,356 2,264 2,805 2,336 2,206 2,264 2,805 2,336 2,000 10,156 3,759 11,726 5,398 15,557 2,056 2,862 3,574 1,55 948 80,606 2,687 1,357 0,19 0 3,359	A 0 573 269 120 2,830 1,647 860 1,411 3,690 2,022 846 3,398 2,044 1,499 8,081 3,282 11,870 4,576 12,826 2,818 2,929 3,217 153 1,209 72,170 2,406 1,215 0,17 0 3,007 12,826	s 0 299 227 122 2.411 1.067 624 591 971 1.049 545 2.079 1.811 1.153 3.432 1.963 8.521 3.392 6.142 1.663 2.285 2.068 113 588 43.116 1.437 726 0.10 0 1.797 8.521	0 134 43 320 59 1577 710 450 417 621 435 891 2021 1511 603 2884 1275 3505 2175 5302 1981 1974 922 93 114 30017 1 1,001 505 0.07 43 1,251 505 0.07 43 1,251 505 0.07 43 1,251 505 0.07 43 1,251 505 0.07 43 1,251 505 0.07 43 1,251 1,001 505 0.07 43 1,251 1,001 505 0.07 43 1,251 1,001 505 0.07 43 1,251 1,001 505 0.07 43 1,001 505 0.07 43 1,001 505 0.07 43 1,001 505 0.07 43 1,001 505 0.07 43 1,001 505 0.07 43 1,001 505 0.07 43 1,001 505 0.07 43 1,001 505 0.07 43 1,001 505 0.07 43 1,001 505 0.07 43 1,001 505 0.07 43 1,001 505 0.07 43 1,001 505 0.07 43 1,001 505 0.07 43 1,001 1,001 505 0.07 43 1,001	T0TAL 739,285 741,223 739,975 738,677 751,724 742,588 737,637 739,196 745,552 739,457 739,380 744,620 741,794 736,465 761,543 735,587 763,957 763,957 763,957 763,957 7744,925 781,812 727,864 725,985 726,042 714,858 717,682

Refer to DWR Report No. 4 Plate 2 for location of subareas (unit nos.).

Figure 21. High Drainage Area, 1954-55
Unit 22 included Bacon, Mandeville, MacDonald, Mildred, and Medford islands. Unit 20 included Empire, King, and Terminous tracts. Unit 18 included Staten, Bouldin, and Venice Islands. The three units adjoin each other and are centrally located in the Lowlands. The soil types of these three units are peaty organic. This suggests that monitoring should focus on these islands and adjacent channels, becasuse water quality impacts, should they occur, would be observed in this area.

Table 10. Drainage Volume From 3 Study Areas, 1954-55 Monthly volume in acre-feet

Unit	Acreage	June 1954	July 1954	August 1954	December 1954	January 1955
22 20 18 Sum Total Percent	19357 21302 18504 59163 419457 14	15756 9197 8676 33629 70573 48	15252 10223 11051 36526 80575 45	12942 10410 8210 31562 70857 45	10635 10209 5759 26603 85731 31	12773 14637 4836 32246 95668 34
Unit	Acreage	June 1955	July 1955	August 1955		
22 20 18 Sum Total Percent		16862 10456 5603 32921 71084 46	15557 11726 10156 37439 80606 46	12826 11870 8081 32777 72170 45		

Total is Delta Lowlands acreage or total drainage from Delta Lowlands. Percent is percent of total.

Based on these estimates, about half of the Delta Lowlands drainage volume may have been from a small area (14%) of the Delta Lowlands during the 1954 and 1955 summers. More recent and extensive data collected by this investigation would help determine if this area is as important today. It could be the key to a solution for improving export water quality without addressing Delta-wide discharges.

Drainage rate expressed as acre-feet of drainage per acre of drained land showed significant differences among the tracts. Tracts in study units 18, 20, and 22 had the highest rate of summer drainage. The June to August rates for these three units were 2 to 4 times (0.43 to 0.81 acre-feet/acre) the monthly averages (0.17 to 0.19 acre-feet/acre) for the Lowlands. Rates for all months are shown in Table 10.

The limited distribution of drainage sites in this study prevented comparison of current and past estimates of drainage volume and rates within the study units of the 1954-55 study. The current study sites did not fully correspond to those of the 1954-55 study so the inadequate overlap of study areas prevented a complete comparison.

Although power use and pump test data were available to compute volume for a particular pump station, the amount of acreage drained by each station was uncertain. At best, only about half the number of pump stations within a given 1954-55 study unit could be sampled in this study. Drained areas are not equally divided among the number of pumps or pump stations on an island. As a result, extrapolation to Delta-wide conditions based on the limited DIDI data is subject to error.

To estimate total Delta drainage volume would require a comprehensive study such as the DWR 1954-55 study. Since we were limited to 54 drains, we then examined the 1954-55 drainage volume estimates to make some present-day estimates.

Table 11. Drainage Rates in the Delta Lowlands, 1954-55 (Units in acre-feet of drainage per acre of land drained)

				19	54				
UNIT NO.	ACREAGE	May	June	July	Aug	Sept	Oct	Nov	Dec
2	11,202	0.004	0.000	0.000	0.000	0.000	0.016	0.000	0.060
3	5,465	0.117	0.101	0.121	0.096	0.043	0.027	0.041	0.071
6	33,027	0.019	0.012	0.010	0.009	0.011	0.011	0.045	0.077
7	7,510	0.068	0.016	0.014	0.008	0.009	0.006	0.024	0.050
8	22,103	0.187	0.135	0.101	0.133	0.136	0.178	0.130	0.087
9	16,085	0.077	0.101	0.129	0.129	0.093	0.059	0.043	0.061
10	11,085	0.036	0.078	0.095	0.088	0.032	0.024	0.028	0.044
11	14,365	0.113	0.1	0.093	0.094	0.054	0.037	0.052	0.096
12	16,877	0.143	0.186	0.211	0.176	0.086	0.061	0.088	0.173
13	16,641	0.053	0.092	0.122	0.096	0.021	0.028	0.032	0.077
14	14,671	0.118	0.145	0.140	0.063	0.044	0.084	0.101	0.148
15	26,424	0.098	.093	0.114	0.109	0.078	0.112	0.130	0.184
16	18,343	0.115	. 133	0.127	0.173	0.117	0.083	0.059	0.153
17	10,191	0.097	.094	0.135	0.099	0.073	0.114	0.116	0.353
18	18,504	0.255	.469	0.597	0.444	0.365	0.378	0.218	0.311
19	17,917	0.140	. 199	0.259	0.240	0.150	0.085	0.071	0.154
20	21,302	0.256	. 432	0.480	0.489	0.217	0.215	0.265	0.479
21	14,846	0.212	.269	0.353	0.317	0.182	0.181	0.255	0.498
22	19,357	0.639	.814	0.788	0.669	0.446	0.481	0.446	0.549
23	24,493	0.098	. 124	0.160	0.133	0.081	0.155	0.143	0.380
24	32,879	0.065	.076	0.090	0.086	0.056	0.064	0.085	0.271
25	33,212	0.070	.066	0.114	0.069	0.037	0.027	0.029	0.115
26	2,810	0.034	.047	0.051	0.053	0.035	0.031	0.050	0.142
27	10,148	0.066	.062	0.121	0.094	0.034	0.010	0.006	0.019
TOTAL	419,457								
ROUNDED	AVG.	0.13	0.17	0.19	0.17	0.11	0.11	0.11	0.20
MIN	2,810	0.004	0.000	0.000	0.000	0.000	0.006	0.000	0.019
MAX	33,212	0.639	0.814	0.788	0.669	0.446	0.481	0.446	0.549

Table 11 (Cont.) Drainage Rates in the Delta Lowlands, 1954-55 (Units in acre-feet of drainage per acre of land drained)

Unit							1955							
No	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Total	Min	Avg	Max
2	0.052	0.008	0.000	0.008	0.000	0.000	0.000	0.000	0.000	0.012	0.160	0.000	0.005	0.060
3	0.109	0.102	0.087	0.074	0.099	0.073	0.122	0.105	0.055	0.008	1.451	0.000	0.041	0.122
6	0.089	0.065	0.023	0.012	0.009	0.007	0.010	0.008	0.007	0.010	0.433	0.000	0.012	0.089
7	0.089	0.049	0.029	0.030	0.034	0.025	0.028	0.016	0.016	0.008	0.521	0.000	0.015	0.089
8	0.047	0.049	0.079	0.091	0.107	0.148	0.173	0.128	0.109	0.071	2.088	0.000	0.060	0.187
9	0.052	0.016	0.025	0.066	0.046	0.081	0.088	0.102	0.066	0.044	1.279	0.000	0.037	0.129
10	0.057	0.032	0.022	0.040	0.048	0.068	0.079	0.078	0.056	0.041	0.945	0.000	0.027	0.095
11	0.106	0.060	0.044	0.062	0.055	0.094	0.100	0.098	0.041	0.029	1.346	0.000	0.038	0.118
12	0.184	0.100	0.100	0.153	0.129	0.232	0.233	0.219	0.058	0.037	2.567	0.000	0.073	0.233
13	0.078	0.047	0.046	0.065	0.058	0.095	0.142	0.122	0.063	0.026	1.262	0.000	0.036	0.142
14	0.134	0.112	0.135	0.157	0.110	0.121	0.154	0.058	0.037	0.061	1.922	0.000	0.055	0.157
15	0.217	0.109	0.105	0.096	0.068	0.092	0.106	0.129	0.079	0.076	1.993	0.000	0.057	0.217
16	0.219	0.080	0.057	0.101	0.093	0.134	0.127	0.111	0.099	0.082	2.063	0.000	0.059	0.219
17	0.314	0.102	0.127	0.179	0.156	0.158	0.196	0.147	0.113	0.059	2.632	0.000	0.075	0.353
18	0.261	0.131	0.105	0.078	0.190	0.303	0.549	0.437	0.185	0.156	5.430	0.000	0.155	0.597
19	0.137	0.068	0.046	0.073	0.146	0.176	0.210	0.183	0.110	0.071	2.518	0.000	0.072	0.259
20	0.687	0.180	0.095	0.166	0.306	0.491	0.550	0.557	0.400	0.165	6.430	0.000	0.184	0.687
21	0.503	0.186	0.130	0.158	0.261	0.360	0.364	0.308	0.228	0.147	4.914	0.000	0.140	0.503
22	0.660	0.382	0.265	0.204	0.555	0.871	0.804	0.663	0.317	0.274	9.825	0.000	0.281	0.871
23	0.483	0.132	0.086	0.075	0.082	0.101	0.084	0.115	0.068	0.081	2.581	0.000	0.074	0.483
24	0.279	0.104	0.062	0.065	0.072	0.081	0.087	0.089	0.069	0.060	1.762	0.000	0.050	0.279
25	0.111	0.066	0.059	0.076	0.067	0.077	0.108	0.097	0.062	0.028	1.278	0.000	0.037	0.115
26	0.147	0.053	0.033	0.034	0.038	0.047	0.055	0.054	0.040	0.033	0.979	0.000	0.028	0.147
27	0.026	0.013	0.031	0.071	0.048	0.058	0.093	0.119	0.058	0.011	0.939	0.000	0.027	0.121
ROUNI	DED													
AVG.	0.23	0.10	0.08	0.09	0.12	0.17	0.19	0.17	0.10	0.07	2.39	0.00	0.07	0.26
MIN	0.026	0.008	0.000	0.008	0.000	0.000	0.000	0.000	0.000	0.008	0.160	0.000	0.005	0.06
MAX	0.687	0.382	0.265	0.204	0.555	0.871	0.804	0.663	0.400	0.274	9.825	0.000	0.281	0.87

Refer to DWR Report No. 4, Plate 2 for location of subareas (unit nos.).

Note: Irrigated acreage was 291,667. Rates derived by dividing volume by total acreage of subunits, not irrigated acres. Highest monthly drainage rates observed at units 18, 20, and 22 (in bold print).

3. Present Conditions

To make present-day estimates of the current drainage volume in the Delta, the historic conditions of the 1954-55 study were compared to current conditions. These conditions included:

- Crop acreage
- Consumptive Use
- River Flows
- Precipitation

There were no recent applied water data to compare estimates made in 1954-55.

If historic and current conditions were similar, then drainage volumes could be assumed to be unchanged from the 1954-55 estimates. If conditions differed, then the 1954-55 drainage volume estimates could be higher or lower than present. If changes could not be determined because of lack of data, then the 1954-55 drainage volume data could serve as an indicator of the relative volume of drainage that might be expected under certain stated assumptions. In all cases, the 1954-55 data served as a benchmark for estimating present-day drainage volumes.

Based on the following comparisons of historic data, we believe a reasonable estimate of the current Delta Lowlands drainage volume during dry year conditions (W.Y. 1986-1990) to be 90 to 110% of the 1954-55 estimates given in DWR Report No. 4. This estimate is based on irrigated and total crop acreages, consumptive use model results, hydrology, and precipitation, which were similar in 1986-87 to those in 1954-55.

a. <u>Crop Acreage</u>

Crop acreage data were obtained from numerous DWR sources for comparison. We saw differences in the classification or grouping of some crops. For example, grain and hay were predominantly dry farmed prior to 1970. Spring rainfall and subsurface water were the main water supply. In the 1970s and thereafter, farmers irrigated to increase yield because studies showed this increases production. This irrigation usually occurs in April to July but varies annually and may begin as early as February (G. Sato, pers. comm.). This change affected the non-irrigated and irrigated crop acreage totals and may therefore also affect applied water and drainage estimates. Report No. 4 gave a total Delta Lowlands irrigated crop acreage of 291,667. However, this excluded 79,709 acres of grain and hay, which apparently were dry farmed. When grain and hay are included, the total Lowlands crop acreage is 371,376 acres.

Other differences in the grouping of crop acreages were related to the tabulator of the data. Some land use analysts lumped small acreages as miscellaneous while others kept them separate.

In June 1985, DWR revised their annual crop acreage data for their Consumptive Use Model. These annual estimates are shown in Table 12 and were used to make our comparisons of land use in the Delta Lowlands.

Based on the total irrigated crop acreage (1954 vs. 1984), there has been about a 7% increase (22,000 acres). The total farmed acreage has decreased by about 6 percent.

If drainage volume follows irrigated crop acreage or total crop acreage, we might expect changes to be proportionately related to those acreages.

Table 12. Delta Lowlands Land Use Summary

DWR tabulation (J. Kono, 6/85) Units in thousands of gross acres

		GI	ENERAL	SUGAR			MISC.	TOMA -			TOT -	DRY -	TOT-		NATIVE			TOT-	TOT-
YEAR	PASTURE	ALFALFA I	FIELD	BEET	GRAIN	RICE	TRUCK	TOES	ORCHARD	VINEYRD	IRIG	GRAIN	FARM	URBAN	VEG	RIPARIAN	H20-SURF	V-W	AC
1955	23.0	34.5	71.5	30.2	32.0	2.1	94.8	30.1	5.1	0.1	323.4	47.7	371.1	6.9	34 5	7.6	45 9	88.0	466 0
1956	22.2	34.4	74.6	30.8	31.9	1.9	93.3	30.5	5.4	0.0	325.0	46.3	371.3	6.9	34.1	7.6	45 9	87 6	465 8
1957	21.4	34.2	77.8	31.4	31.8	1.6	91.8	30.8	5.7	0.0	326.5	44.8	371.3	6.9	34 5	7.6	45 9	88 0	466 2
1958	20.5	34.2	80.9	32.0	31.7	1.5	90.4	31.2	5.9	0.0	328.3	43.4	371.7	6.9	34 0	7.6	45 9	87 5	466 1
1959	19.7	34.2	84.1	32.7	31.5	1.2	88.8	31.5	6.1	0.0	329.8	41.8	371.6	6.9	34.1	7 6	45 9	87 6	466 1
1960	18.8	34.2	87.2	33.4	31.3	0.9	87.2	31.8	6.3	0.0	331.1	40.3	371.4	6.9	34.2	7.6	45 9	87 7	466 0
1961	18.0	34.1	90.2	34.0	31.2	0.7	85.6	32.2	6.5	0.0	332.5	38.6	371.1	6.9	34.5	7.6	45.9	88.0	466.0
1962	18.1	34.6	89.7	32.5	33.5	0.2	85.0	33.1	6.9	0.0	333.6	37.9	371.5	7.1	33.7	7.6	45.9	87 2	465 8
1963	17.4	35.1	92.5	30.8	35.7	0.2	79.4	34.2	7.2	0.0	332.5	37.3	369.8	7.3	35.4	7.6	45 9	88.9	466 0
1964	17.7	35.3	94.6	28.1	38.0	0.2	76.1	34.9	7.6	0.1	332.6	36.6	369.2	7.5	35.8	7.6	45.9	89.3	466 0
1965	17.7	35.7	96.7	25.4	40.2	0.2	72.7	36.0	7.9	0.2	332.7	36.0	368.7	7.6	36.3	7.6	45.9	89.8	466 1
1966	18.0	36.3	98.8	22.9	42.5	0.2	68.6	36.1	8.2	0.3	331.9	35.3	367.2	7.8	37.1	7.6	45.9	90.6	465 6
1967	17.7	36.6 10	01.2	20.2	44.8	0.2	64.5	38.0	8.6	0.4	332.2	34.6	366.8	8.0	37.7	7.6	45 9	91 2	466 0
1968	17.8	36.9 10	03.3	17.3	47.0	0.2	60.4	39.1	8.8	0.4	331.2	33.9	365.1	8.2	39.2	7.6	45.9	92.7	466.0
1969	18.4	36.9 1	06.0	17.7	48.2	0.0	58.4	37.1	8.9	0.5	332.1	29.7	361.8	8.6	41.5	7.6	45 9	95.0	465 4
1970	18.0	36.4 1	07.3	17.7	51.7	0.4	58.0	35.1	8.9	0.7	334.2	25.4	359.6	9.0	43.9	7.6	45.9	97.4	466 0
1971	17.7	35.1 1	08.2	17.8	59.4	0.4	54.0	33.1	8.9	1.1	335.7	20.6	356.3	9.4	46.8	7.6	45.9	100.3	466 0
1972	17.7	34.4 1	09.8	17.9	71.3	0.4	44.0	31.1	8.9	1.6	337.1	19.9	357.0	9.8	45.7	7.6	45.9	99.2	466.0
1973	17.6	33.7 1	11.4	18.0	81.6	0.4	39.9	29.1	8.9	2.2	342.8	14.2	357.0	10.2	45.3	7.6	45.9	98.8	466.0
1974	18.0	33.1 1	12.9	18.1	87.1	0.4	35.7	26.9	9.0	2.8	344.0	14.8	358.8	10.8	33.0	7.6	47.7	88.3	457.9
1975	17.1	31.0 1	19.8	22.0	90.0	0.4	30.6	26.2	9.0	2.9	349.0	9.8	358.8	11.7	40.5	7.3	47.7	95.5	466.0
19/6	16.0	29.1 1	26.8	26.0	93.0	0.3	25.6	25.5	9.1	2.9	354.3	1.5	355.8	12.8	42.4	7.3	47.7	97.4	466.0
19//	17.3	34.6 1	18.8	16.4	105.8	0.2	23.0	30.5	9.1	2.9	358.6	0.2	358.8	12.9	39.3	7.3	47.7	94.3	466.0
1978	15.6	28.4 1	28.5	16.3	102.8	0.2	26.7	27.1	8.9	3.1	357.6	2.0	359.6	13.4	38.0	7.3	47.7	93.0	466.0
1979	15.5	26.6 1	29.9	16.6	100.5	0.0	25.3	26.0	8.9	3.3	352.6	2.0	354.6	13.8	42.6	7.3	47.7	95w6	466.0
1980	15.4	24.8 1	30.7	17.0	98.6	0.0	23.8	24.8	8.9	3.4	347.4	2.0	349.4	14.2	47.3	7.3	47.7	102.3	465.9
1981	15.4	24.8 1	30.7	17.1	98.3	0.0	23.9	24.8	8.9	3.5	347.4	2.0	349.4	14.6	47.0	7.3	47.7	102.0	466.0
1982	15.4	24.7 1	30.6	17.1	98.2	0.0	24.0	24.7	8.8	3.6	347.1	2.0	349.1	15.1	46.8	7.3	47.7	101.8	466.0
1983	15.4	24.7 1	30.6	17.1	98.1	0.0	24.0	24.6	8.7	3.7	346.9	2.0	348.9	15.5	46.6	7.3	47.7	101.6	466.0
1984	15.4	24.7 13	30.6	17.1	97.9	0.0	24.0	24.6	8.6	3.8	346.7	2.0	348.7	16.0	46.3	7.3	47.7	101.3	466.0

GENFIELD	general field crops
SUGRBEET	sugarbeets
MISCTRUK	miscellaneous truck crops
TOT-IRIG	total irrigated crop acreage
DRY-GRAN	dry farmed grains
TOT-FARM	total farmed crop acreage
NATIV-VG	native vegetation
H20-SURF	water surface
TOT-V-W total	of native vegetation, riparian, and water surface acreages
TOTAL -AC	total acreage

b. Consumptive Use

Consumptive use is the total amount of water from transpiration, and evaporation losses from lands on which there is vegetation, plus evaporation from bare lands and water surfaces. Consumptive use requirements will vary with location and climate, especially with temperature and precipitation. Generally, consumptive use is estimated for large areas based on measurements from sample or representative plots of land. Consumptive use can be based on measurements of pan evaporation, which is the amalgamation of various climatic factors such as wind, temperature, and relative humidity. Consumptive use can also be estimated by daylight hours, and available moisture from precipitation, irrigation, or natural ground water.

Total consumptive use estimates shown in the Consumptive Use Model developed by the Department's Division of Planning (model run of November 6, 1985) are listed in Table 13.

The DWR Consumptive Use Model data for water years 1954, 1955, 1981, and 1983 are estimates of the total consumptive use for crop acreage and patterns surveyed respectively for each of those years. The data for water year 1981 were selected to compare consumptive use of present-day crop acreage under water year conditions similar to that occurring in the 1954-55 study. Water years 1955 and 1981 were classified as dry under SWRCB Decision 1485 criteria. The Four-Basin Indices were 10.98 and 11.1 million acre-feet for water years 1955 and 1981, respectively. For comparison, data for water year 1983, a classified wet year, are also shown.

The annual total consumptive use comparison suggests that water demands have not changed significantly between the mid-1950s and early 1980s. If drainage volumes relate well to consumptive use, then present-day drainage volume estimates are close to those estimated for 1954-55.

The table also includes precipitation and net consumptive use estimates. Net consumptive use is calculated by subtracting the precipitation values from the total consumptive use values. When the net consumptive use values are negative, there is excess water resulting in Delta runoff or drainage. When net consumptive use values are positive, then water must be applied or siphoned from the Delta channels to meet the year's crop demands.

The net consumptive use for water years 1954 and 1981 was nearly equal at 871 and 883 thousand acre feet, respectively. The model results should be used and interpreted with caution as with any other modeling results. Different assumptions will affect the model estimates. For example, the DWR Division of Planning Consumptive Use Model uses estimated leach water adjustments for the Delta Lowlands. These estimated values are fixed for each calendar month and used in the model for all water years regardless of hydrology. They are estimates of the amount of water applied for soil leaching from the surrounding channels. The results of this model are shown only to compare estimated changes in consumptive use demands for 1954-56 to present which may have affected drainage volume. At this time, the historic consumptive use estimates indicate that present-day drainage volumes are at least equal to those reported in the 1954-55 study.

鳿

9

-

调

3

Table 13. DWR Consumptive Use Model Estimates

Allen a

Title in

Situal of

and the second

Î

Contraction of the second

Contraction of the

Contraction of the second

1

Delta Lowlands

In thousands of acre-feet

	W	.Y. 1954		W.	Y. 1955		W	.Y. 1981		1	W.Y. 1983	3
	TCU	Ppt.	NCU	TCU	Ppt.	NCU	TCU	Ppt.	NCU	TCU	Ppt	. NCU
Oct	63	3.9	59.1	60.5	0	60.5	52.3	2.3	50	105.5	66.2	39.3
Nov	73.7	40.8	32.9	103.8	75.1	28.7	39.5	4.2	35.3	140.1	199.1	-59
Dec	63.3	33.1	30.2	122.6	133.2	-10.6	80.8	59.3	21.5	48.1	100.1	-52
Jan	90.7	76.6	14.1	46.8	118.6	-71.8	129.1	147.5	-18.4	22.7	207.9	-185.2
Feb	77.6	68.9	8.7	59.2	43.5	15.7	65.9	37	28.9	41.2	187.9	-146.7
Mar	92.4	92	0.4	67.4	19.6	47.8	90.3	112.4	-22.1	52.5	279.2	-226.7
Apr	87.7	51.2	36.5	97.1	72	25.1	77.6	21.2	56.4	95.8	107.8	-12
May	106.8	9.2	97.6	112.9	23.1	89.8	103.3	4.2	99.1	87.1	11.6	75.5
Jun	183.3	5.4	177.9	182.3	0	182.3	222.7	0	222.7	170.7	0.8	169.9
Jul	200.3	0	200.3	203.4	0	203.4	209.9	0	209.9	198.3	0	198.3
Aug	134	1.5	132.5	134.9	0	134.9	125.5	0	125.5	131.9	1.5	130.4
Sep	80.5	0	80.5	84.8	7.3	77.5	86.2	12.3	73.9	99.5	28.1	71.4
Total	1253.3	382.6	870.7	1275.7	492.4	783.3	1283.1	400.4	882.7	1193.4	1190.2	3.2

.

c. <u>River Flows</u>

Mean daily river flows in 1954-55 and 1987-88 are shown in Table 14 for the Sacramento River at Sacramento and San Joaquin River near Vernalis. The difference between the 1987 and 1954 monthly mean daily flows are shown in the row labeled "1987-1954." The difference between the 1988 and 1955 values are shown in the row labeled "1988-1955."

Water year 1954 (October 1, 1953 to September 30, 1954) was an "above normal" water year for the Sacramento-San Joaquin Delta according to criteria set in SWRCB Decision 1485. The unimpaired runoff for the Sacramento River Basin by the Sacramento Valley Four-Basin Index was 17.43 million acre-feet. The following water year 1955 (October 1, 1954 to September 30, 1955) was a "dry" year with total unimpaired runoff at 10.98 million acre-feet.

Water year 1987 (October 1, 1986 to September 30, 1987) was classified as a "critically dry" year with a Four-Basin Index of 9.14 million acre-feet. Rainfall was 65 percent of average. The 1987 water year was the ninth driest of this century. Water year 1988 (October 1, 1987 to September 30, 1988) was also "critically dry," with a Four-Basin Index of 9.17 million acre-feet.

Because water years 1987 and 1988 were drier than water year 1955, mean daily river flows in some months during 1987 and 1988 were lower than during 1954 and 1955. This is shown by the negative values (parenthesized) in rows labelled "1987-1954" and 1988-1955."

Sacramento River mean daily flows in May, June, October, November, and December of 1987 were less than for the same months in 1954. February, March, May, and June 1988 flows in the Sacramento River were also lower than the corresponding months of 1955. Both Sacramento and San Joaquin River flows were higher in July and August 1987 and 1988 than in 1954 and 1955. July and August are typically peak months of applied water and drainage as well as low river flows. The ratio of drainage to river flow is normally higher in the summer.

The summer river flows and dry water year during the 1954-55 drainage study and that of the 1987-88 investigation were similar enough for comparison and use in estimating the present-day drainage volumes during the growing season or seasonal irrigation period.

Table 14. Sacramento and San Joaquin River Flows Mean Daily Flow in cubic feet per second

Sacramento River	May	June	July	Aug	Sept	Oct	Nov	Dec	
1954	24,830	11,030	8,097	9,236	11,130	10,580	14,550	23,690	
1987	9,996	10,067	15,142	14,439	11,625	9,509	8,129	15,744	
1987-1954	(14,834)	(963)	7,045	5,203	495	(1,071)	(6,421)	(7,946)	
San Joaquin River									
1954	6,716	1,286	542	546	754	1,043	1,386	1,814	
1987	2,178	1,990	1,632	1,627	1,597	1,370	1,548	1,278	
1987-1954	(4,538)	704	1,090	1,081	843	327	162	(536)	
Sacramento River	Jan	Feb	March	April	May	June	July	Aug	Sept
1955	22,770	15,110	13,650	13,780	21,600	12,190	8,990	9,025	9,845
1988	25,400	12,188	11,348	16,887	10,974	10,578	14,642	13,287	11,537
1988-1955	2,630	(2,922)	(2,302)	3,107	(10,626)	(1,612)	5,652	4,262	1,692
San Joaquin River									
1955	2,965	2,451	1,561	917	1,150	1,496	416	431	610
1988	1,483	1,389	2,241	2,146	1,781	1,711	1,357	1,557	1,452
1988-1955	(1,482)	(1,062)	680	1,229	631	215	941	1,126	842

Source: U.S. Geological Survey

Values in parentheses are negative.

d. Precipitation

Precipitation data are not critical for examining year to year differences in drainage during the summer peak drainage months, July and August, as precipitation is negligible (Table 14). However, for other months when heavy precipitation occurs, total consumptive use, applied water, and drainage volume will vary significantly among years, and precipitation can directly and indirectly affect drainage quality and quantity.

Precipitation in the Delta Lowlands by month in thousands of acre-feet for water years 1955, 1956, and the average for each month for water years 1921 to 1983 (October 1, 1920 to September 30, 1983) are shown in Table 15. The data show that, in general, summer (June - September) precipitation does not contribute to drainage volume. During water years 1987 and 1988 summer rainfall also agreed with historic trends, as these were two critically dry water years.

The precipitation data suggest that comparisons of the summer data in the 1954-55 drainage study to that of the summer 1987-88 drainage data can be made, as summer rainfalls were about the same.

Table 15. Precipitation on Delta Lowlands In thousands of acre-feet

MONTH	W.Y. 1954	W.Y. 1955	W.Y. 1921-83 average
Oct	3.9	75.1	67.6
Dec	33.1	133.2	105.8
Jan	76.6	118.6	120
Feb	68.9	43.5	99.4
Mar	92	19.6	80
Apr	51.2	72	47.9
May	9.2	23.1	15
Jun	5.4	0	4.5
Jul	0	0	0.8
Aug	1.5	0	1.5
Sep	0	7.3	6.6
Total	382.6	492.4	580.4

Source: DWR Consumptive Use Study 10/2/85 Total Basin Precipitation, Delta Lowlands Basin area 462,100 acres.

D. Estimating Drainage Impacts

1. South Delta Flow Patterns

To study the flow patterns in the Delta, we monitored selenium entering the Delta from the San Joaquin River and we conducted synoptic water quality sampling at major channels throughout the Delta.

The Central Valley Regional Water Quality Control Board has documented that selenium-laden waters enter the San Joaquin River from Mud and Salt Sloughs during a period of winter low river flows and field leaching of salts. Selenium levels in the San Joaquin River are typically elevated for a period of 6 to 8 weeks between February and March each year. During this period, elevated selenium levels can be traced down the San Joaquin River and through the southern Delta.

The selenium data collected in this study showed that under the low flow conditions, San Joaquin River water was flowing westward toward the Delta Mendota Canal intake via Old River and Fabian-Grant Line Canals. The selenium distribution for the March 2, 1989 selenium sampling is shown in Figure 22. The hydrologic conditions are shown in Table 16.

On some occasions, selenium has been actually detected at the DMC intake at Lindemann Road but not at the Clifton Court intake on Old River or at the Banks Headworks (Figure 23). This indicates SJR water is being diverted to the DMC intake. Mineral data from over 20 additional sampling runs from 12/18/89 to 3/20/90 confirm these observations more strongly as concentrations of major ions (e.g. sodium, TDS) are much higher and easier to detect than selenium levels (mg/L vs. μ g/L) and are more conservative (not biologically removed) than selenium.

Selenium in the South Delta

Figure 24. Deltawide EC (µS/cm) July 25, 1989

Figure 25. Deltawide TDS (mg/L) July 25, 1989

Figure 26. Deltawide Alkalinity (mg/L) July 25, 1989

Figure 28. Deltawide Sulfate (mg/L) July 25, 1989

Results from the synoptic survey conducted on July 29, 1989 show the path of the San Joaquin River water flowing into the DMC in even greater detail. The data showed that under the hydrologic conditions (SJR Vernalis flow 1,242 cfs and Sacramento River Freeport flow 21,278 cfs) that occurred, San Joaquin River was being diverted to the Delta Mendota Canal intake. Some of these results are shown in Figures 24 through 28 for EC, TDS, alkalinity, sodium, and sulfate, respectively.

All of these measurements indicate that virtually no San Joaquin River water entered Clifton Court Forebay. During this entire period, continuous pumping on the DMC exceeded the San Joaquin River flow at Vernalis station by a factor of about two or more. Also, the Forebay gates generally were open during incoming tide conditions when Old River flows were upstream towards the DMC intake. By operating the gates to control water quality and quantity, the Forebay primarily received an admixture of local drainage, Sacramento River fresh water, and bay water. This admixture is evidenced by increased EC, TDS, and other ionic constituents that show Sacramento River fresh water being degraded in water quality as it passes through the Delta. Water quality observed at the Banks Headworks reflects the compositing of Forebay captured water.

Estimates of the flow in the southern Delta have been developed by DWR O & M to aid in the operation of the SWP. O & M has found that when exports exceed San Joaquin River flow, San Joaquin River water is drawn through Old and Middle Rivers and Grant Line Canal. Flow of the San Joaquin River at Stockton is actually reversed as Delta water is drawn upstream into Old and Middle Rivers (J. Snow, memo 4/17/86). During the recent drought years (including W.Y. 1988), Delta export pumping has either reversed the flow of the San Joaquin River at Stockton or reduced it to a net "trickle."

During W.Y. 1988 pumping at DMC exceeded the total San Joaquin River flows by a factor of 1.8 to 3.2 (Table 17). Even when the entire San Joaquin River water flowed through Old and Middle Rivers and Grant Line Canal, the remaining two-thirds of the flow had to be pulled upstream in the Middle River and past the Clifton Court Forebay intake gates.

Under extreme high-flow conditions, however, such as during the February 1986 storm and flood conditions, the proportion of San Joaquin River water collected by the Forebay would increase. Generally, under conditions of high runoff, the San Joaquin River water quality is much improved because drainage is a smaller component. Data from the Interagency Delta Health Aspects Monitoring Program showed significant fresh water characteristics in San Joaquin River water quality during this period.

These surveys during prolonged drought conditions have been valuable in studying the water quality and flow patterns of the Delta. The synoptic surveys will now be conducted each quarter (January, April, July, and October) to examine and characterize local water quality conditions further.

THE TO THE THE THE STREETS SUITE	Table	16.	Hydro	logy	During	Synoptic	Surveys
----------------------------------	-------	-----	-------	------	--------	----------	---------

Date	Delta Inflow avg. cfs	Old Middle River avg. cfs	Rio Vista avg. cf	Cross Channel s	Delta Outflow avg. cfs	Antioch Estimated avg. cfs	Stockton avg. cfs	Banks Headworks acre-ft	Tracy Plant acre-ft
3/1/89	13,339	-6,531	6,677	open 2	5,888	-613	-337	6,863	8,126
3/2/89	13,980	-5,778	6,987	open 2	7,230	211	-193	5,729	7,917
3/3/89	15,197	-7,049	7,617	open 2	6,851	-595	-199	7,269	8,221
7/23/89	23,573	-9,337	12,085	open 2	8,084	-3,221	-541	12,583	9,376
7/24/89	23,960	-9,988	12,251	open 2	7,595	-3,746	-566	11,994	9,148
7/25/89	23,531	-9,788	11,989	open 2	7,463	-3,677	-567	11,820	9,460

avg. cfs is average cfs Negative values indicate reverse flow (upstream). 1 cfs for 24 hrs. = 1.983 acre-ft. The number of cross channel gates that were open are noted (0, 1, or 2).

Table 17. W.Y. 1988 Flows at DMC, Vernalis and Stockton

Month	Daily Avg Pumping @ DMC (CFS)	Daily Avg Flow @ Vemalis (CFS)	Ratio: DMC to Vernalis	San Joaquin River Calculated Daily Avg Flow at Stockton (CFS)	Stockton #Days +flow/ -flow
10/87	3998	1273	3.1:1	-83.	+3/-28
11/87	3930	1573	2.5:1	83.	+29/-1
12/87	4033	1361	3.0:1	-313.	+5/-26
1/88	4063	1521	2.7:1	-371.	+2/-29
2/88	4098	1374	3.0:1	-403.	+0/-29
3/88	4083	2294	1.8:1	153.	+27/-4
4/88	4083	2120	1.9:1	37.	+18/-12
5/88	2971	1649	1.8:1	41.	+18/-13
6/88	2993	1526	2.0:1	37.	+18/-12
7/88	4479	1379	3.2:1	-283.	+0/-31
8/88	4531	1604	2.8:1	-238.	+5/-26
9/88	4592	1464	3.1:1	-194.	+1/-29

Stockton cfs calculated using flows from Vernalis, Channel Depletion, and Exports.

2. Volume Comparisons

The monthly volumes of 1954-55 drainage were compared against river inflow to the Delta (Table 18). The ratio between drainage and river volumes provides a theoretical estimate of the fraction (shown as percentage in Table 19) of recycled drain water in water flowing through the Delta and theoretical maximum dilution of drainage by river water. These comparisons are based on the assumption that 1954-55 and 1987-88 applied water use, drainage volume, and hydrology are similar.

During June and July 1954, the total drainage volumes were 9.5 and 15.6 percent, respectively, of the combined fresh water flowing into the Delta from the Sacramento and San Joaquin rivers and east side streams in June and July of 1954. In June and July 1955 drainage volumes were equal to 8.6 and 14.3 percent of the total river volume for these two months, respectively during June and July of 1955.

When June and July 1954 and 1955 drainage volumes are compared to 1987 and 1988 hydrology, these drainage volumes would have comprised 8% to 9.9 % of the total June and July river volumes. This is because the June and July 1987 and 1988 river flows were about 1.5 to 2 times greater than the June and July 1954 and 1955 river flows.

Table 18. Comparisons of Drainage to River Flows

Delta acreage 419,457 (1954-55)

	1954 M	J	J	A	s	0	N	D
Total 1954-55								
Monthly Drainage (ac-ft)	55,719	70,573	80,575	70,857	44,557	46,817	46,537	85,731
Drainage 1954-55 (ac-ft/day)	1,857	2,352	2,686	2,362	1,485	1,561	1,551	2,858
Drainage 1954-55 (cfs)	938	1,188	1,356	1,193	750	788	783	1,443
Average Daily River Flows								
Sacramento River 1954-55 cfs	25,149	11,061	8,117	9,321	11,279	10,639	14,826	24,678
San Joaquin River 1954-55 cfs	6.718	1,294	537	553	756	1,041	1,378	1,822
East side streams 1954-55 cfs	1,269	185	65	81	185	293	538	1,610
Total 1954-55 cfs	33,136	12,540	8,719	9,955	12,220	11,973	16,742	28,110
Total 1954-55 ac-ft/month	1,968,278	744,876	517,909	591,327	725,868	711,196	994,475	1,669,734
Total Monthly Drainage (as %								
Total 1954-55 River Flow)	2.83%	9.47%	15.56%	11.98%	6.14%	6.58%	4.68%	5.13%
D	0.000	10 007	15 110	14 400	11 005	0 500	0 100	15 744
Sacramento River 1987-88 cfs	9,996	10,067	15,142	14,439	11,625	9,509	8,129	15,744
San Joaquin River 1987-88 cfs Sacramento and San Joaquin	2,178	1,990	1,632	1,627	1,597	1,370	1,548	1,278
River Total ac-ft/month	723,128	716,205	996,368	954,290	785,367	646,195	574,834	1,011,103
cfs (DAYFLO)	4 951	3,496	3,829	2,851	1.790	3.789	4,291	9,455
Computed Delta Outflow 1987-88	.,	0,100	0,010	_,	.,	-,	.,	
ac-ft/month	294,116	207,647	227,445	169,353	106,350	225,055	254,897	561,600
Total 1954-55 Monthly Drainage								
(as % Total 1987-88 River Flow) 7.71%	9.85%	8.09%	7.43%	5.67%	7.25%	8.10%	8.48%
				1920				

1 CFS * 1.98 = # Acre Ft. Per Day # CFS * 1.98 * 30 = TOTAL ACRE-FT PER MONTH (30 DAY MONTH)

Table 18 (cont). Comparisons of Drainage to River Flows

Delta acreage 419,457 (1954-55)

	1955 J	F	м	А	м	J	J	А	s
Total 1954-55									
Monthly Drainage (ac-ft)	95 668	41 960	32 419	37 628	49 813	71 084	80 606	72 170	43,116
Drainage 1954-55 (ac-ft/day)	3,189	1,399	1,081	1,254	1,660	2,369	2,687	2,406	1,437
Drainage 1954-55 (cfs)	1,611	706	546	633	839	1,197	1,357	1,215	726
Average Daily River Flows									
Sacramento River 1954-55 cfs	23,230	15,381	13,860	14,154	21,749	12,204	9,012	9,045	9,918
San Joaquin River 1954-55 cfs	2,977	2,449	1,562	925	1,155	1,496	423	423	605
East side streams 1954-55 cfs	3,823	1,387	748	689	667	151	33	16	101
Total 1954-55 cfs	30,030	19,217	16,170	15,768	23,571	13,851	9,468	9,484	10,624
Total 1954-55 ac-ft/month	1,783,782	1,141,490	960,498	936,619	1,400,117	822,749	562,399	563,350	631,066
Total Monthly Drainage (as %									
Total 1954-55 River Flow)	5.36%	3.68%	3.38%	4.02%	3.56%	8.64%	14.33%	12.81%	6.83%
Sacramento River 1987-88 cfs	25 400	12 188	11 348	16 887	10 974	10 578	14 642	13,287	11.537
San Joaquin River 1987-88 cfs	1,483	1,389	2,241	2,146	1,781	1,711	1,357	1,557	1,452
River Total ac-ft/month Computed Delta Outflow 1987-8	1,596,825	806,468	807,189	1,130,521	757,657	729,986	950,324	881,764	771,527
cfs (DAYFLO) Computed Delta Outflow 1987-8	19,593	3,045	4,542	3,496	3,829	2,851	1,790	3,789	4,291
ac-ft/month	1,163,805	180,863	269,770	207,647	227,445	169,353	106,350	225,055	254,897
Tot 1954-55 Monthly Drainage						7/22/10/22/01/2010		an 14 (and 4	
(as % Total 1987-88 River Flow	w) 5.99%	5.20%	4.02%	3.33%	6.57%	9.74%	8.48%	8.18%	5.59%
		211.22.1							

1 CFS * 1.98 = # Acre Ft. Per Day # CFS * 1.98 * 30 = TOTAL ACRE-FT PER MONTH (30 DAY MONTH)

		U	nits in a	cre-feet					
	1987 M	J	J	A	S	0	N	D	
Total 1987-88 Monthly Sacramento and San									
Joaquin River flows	723,128	716,205	996,368	954,290	785,367	646,195	574,834	1,011,103	
1954-55 Monthly Drainage	55,719	70,573	80,575	70,857	44,557	46,817	46,537	85,731	
Total Exports	326,118	307,888	549,482	601,514	538,742	362,617	324,308	551,547	
Drainage volume as % of Total Exports	17.09%	22.92%	14.66%	11.78%	8.27%	12.91%	14.35%	15.54%	
	1988 J	F	м	A	м	J	J	A	1
Total 1987-88 Monthly Sacramento and San Joaquin River flows	1,596,825	806,468	807,189	1,130,52	1 757,	657 729,9	986 950,	324 881,764	771
1954-55 Monthly Drainage	95,668	41,960	32,419	37,62	.8 49,	813 71,0	084 80,	606 72,170	43
Total Exports	639,451	575,509	518,115	509,07	4 384,	413 350,4	444 489,	009 539,764	482
Drainage volume as % of Total Exports	14.96%	7.29%	6.26%	7.39	9% 12.	96% 20.	28% 16.	48% 13.37%	8

Table 19. Volume Comparisons of Monthly River Flows, Drainage, and Total Exports

1

3. THM Precursor Contributions

An estimate was made of the contribution of THM precursor material from Delta islands to the Delta channels. The calculations were performed to determine the effect that Delta island drainage might have on export water quality.

The calculations focused on the TTHMFP carbon (TFPC) concentrations in the Delta during water year 1988 (October 1, 1987 through September 30, 1988). Certain types of naturally occurring organic materials are the basic and essential precursors in the formation of trihalomethanes and other disinfection by-products (DBPs) during water treatment. The TTHMFP test is a measure of the fraction or concentration of materials in the water that have the propensity to form THMs. Therefore, TTHMFP results are a good basis for assessing the amount of organic THM precursors present.

If all natural organic matter in water readily formed THM then DOC would be a good surrogate indicator. However, our comparisons of Delta water DOC versus TTHMFP show unclear and poorly defined relationships. This may be due to the seasonal and geographical variations in the type and forms of DOC compounds in the water and bromide levels as shown by Amy et al (1990). Bromide from sea water intrusion and soils also contributes to the formation of brominated DBPs during disinfection.

TTHMFP is the sum total of chloroform (CHCl₃), bromodichloro-methane (CHBrCl₂), dibromochloromethane (CHBr₂Cl), and bromoform (CHBr₃) concentrations produced during a formation potential test. Because the atomic weight of bromine is more than twice the atomic weight of chlorine, waters containing equal amounts of THM but varying amounts of bromide exhibit different TTHMFP concentrations by weight. Therefore, to assess the various sources (drainages and rivers) of organic THM precursors, the concentrations of TTHMFP organic carbon in the water were compared.

To make these comparisons, the percent of carbon in each of the four THM species that were formed in the TTHMFP test was first calculated. The percentages by weight of carbon were 10% (CHCl₃), 7.3% (CHBrCl₂), 5.8% (CHBr₂Cl), and 4.8% (CHBr₃). Then the concentrations of each of the 4 THM compounds in the data set were multiplied by their respective percentage of carbon content to obtain the concentrations of THM carbon. These carbon concentrations were then summed to yield the total amount of TFPC.

Water year 1988 river volumes and THM carbon concentrations and 1954-55 drainage volume estimates were then used to compute their respective carbon loads. River volumes used in the calculations included the Sacramento (Freeport), San Joaquin (Vernalis), Mokelumne and Cosumnes. Volumes for the Sacramento and San Joaquin rivers were adjusted to better reflect the actual volumes that are available for mixing in the Delta channels. The adjustments for San Joaquin River flows were based on DWR SWP Operations and Maintenance Dispatcher Daily Reports. All of the flow in the Mokelumne and Cosumnes Rivers was used because of their eastern Delta location and distance from the export pumps. Tidal action should make most of these flows available for mixing in the Delta channels. For these calculations an assumption was made that all of the net Delta outflow to the bay was from the Sacramento River. This assumption, while not entirely correct, was made because most of the San Joaquin River water is pumped through Tracy Pumping Plant and would not exert enough hydraulic head to contribute significantly to the outflow. During outgoing tides most of the Sacramento River flow apparently goes out to the estuary because of the direct channel connection. Since outgoing tides occur half the time, a large proportion of the flow would be lost to mixing in the Delta. Therefore, the total net Delta outflow for the month was subtracted from the total Sacramento River flow for each month to represent Sacramento River water in the Delta.

Three estimates of present-day Lowlands drainage volumes based on estimated Lowlands crop acreages were used to compute TFPC contributions. These were 90%, 100%, and 110% of the 1954-55 drainage volume estimates given in DWR Report No. 4. The adjusted river flows and 1954-55 island drainage volumes are shown in Table 20.

Month	Adjusted	Adjusted	Mokelumne	Cosumnes	1954-55
W.Y. 1988	Sacramento	San Joaquin	River	River	Drainage
OCT	351639	0	3968	598	46820
NOV	228331	4938	2834	1769	46540
DEC	386624	0	3091	4012	85730
JAN	356994	0	3084	13229	95670
FEB	525792	0	2227	6280	41960
MAR	418435	9405	1767	9159	32420
APR	320506	2201	1290	8727	37630
MAY	382757	2520	906	6449	49800
JUN	439137	2201	990	2068	71080
JUL	659114	0	1138	304	80610
AUG	664809	0	675	0	72170
SEP	544096	0	1053	0	43120

Table 20. River Volumes and Estimated Island Drainage (Ac-Ft)

Equations used for the following discussion are listed in Table 22.

94

Table 21. Equations for Tables 22-24

Percent carbon by wt. 10.05% 7.33% 5.76% 4.75%

The following equations were used to calculate the percent of carbon in each of the 4 THMs:

Compound, formula, and equation

Chloroform, CHCl3, {C/(C+H+(3xCl))]x100	
Bromodichloromethane, CHBrCl2, {C/(C+H+Br+(2xCl))}x100	
Dibromochloromethane, CHBr2Cl, {C/(C+H+Cl+(2xBr))}x100	
Bromoform, CHBr3, {C/(C+H+(3xBr))]x100	

Where: C=12, H=1, Cl=35.45 and Br=79.91

Table 22.

The equation used for the calculations was: Dc= ((Sv)(Sc)+(SJRv)(SJRc)+(Mv)(Mc)+(Cv)(Cc))/(Sv+SJRv+Mv+Cv)

Where: Dc = Theoretical THMFP organic carbon concentration (TFPC) in Delta water in $\mu g/L$ Sv = Sacramento River volume in ac-ft Sc = Sacramento River TFPC concentration in $\mu g/L$ SJRv = San Joaquin River volume in ac-ft SJRc = San Joaquin River TFPC concentration in $\mu g/L$ Mv = Mokelumne River volume in ac-ft Mc = Mokelumne River TFPC concentration in $\mu g/L$ Cv = Cosumnes River volume in ac-ft

 $Cc = Cosumes River TFPC concentration in \mug/L$

Table 23.

The following equations were used to compute the proportioned values shown in Table 25:

For June through August estimates: Cw=((.465)(Cm)+(.535)(Cns))

For September through May estimates: Cw=((.325)(Cm)+(.675)(Cns))

Where:

Cw = Flow weighted TFPC concentration in µg/L Cm = TFPC concentration from middle Delta island group in µg/L Cns = TFPC concentration from north-south Delta island group in µg/L

Tables 24.

The equations used in these calculations are shown below.

River plus drainage:

Crd=((Fd)(Cw)+(Fr)(Cr))/(Fd+Fr)) using 1954-55 drainage volume Crd=((0.9)(Fd)(Cw)+(Fr)(Cr))/(((0.9)(Fd)+(Fr))) using 90% drainage volume Crd=((1.1)(Fd)(Cw)+(Fr)(Cr))/((1.1)(Fd)+(Fr)) using 110% drainage volume Concentration of river TFPC:Conct=(2.63)(Cr)

Where:

Crd = TFPC concentration of river and drainage mixed in µg/L Fd = Total Drainage volume in ac-ft Fr = Total river volume in ac-ft Cw = Flow weighted TFPC concentration of all drains in µg/L Cr = Flow weighted TFPC concentration of rivers in µg/L Conct = Concentration of river TFPC TFPC concentrations in the Sacramento, Mokelumne, Cosumnes and San Joaquin rivers were flow weighted to provide a single theoretical mixed concentration in the Delta. TTHMFP data for the Mokelumne and Cosumnes rivers were not available for the 1988 water year. Instead, data collected during the 1984 water year were used. Because of the generally good quality of these rivers and their relatively low flow, monitoring of these two stations under IDHAMP was discontinued after 1984. The results are shown below in Table 22.

Month	Sacramento	San Joaquin	Mokelumne	Cosumnes	Flow Weighted /1
OCT	24.82	26.71	24.31	15.41	24.79
NOV	31.14	52.22	19.21	17.35	31.33
DEC	29.13	42.73	19.21	83.82	29.61
JAN	38.88	45.37	22.22	16.27	37.94
FEB	24.26	55.65	11.32	14.33	24.09
MAR	26.16	35.16	26.39	19.80	26.22
APR	16.43	35.34	23.38	20.65	16.69
MAY	22.20	35.72	20.29	13.33	22.14
JUN	26.91	39.44	23.52	23.93	26.95
JUL	21.10	54.14	36.44	24.67	21.13
AUG	19.25	48.57	31.42	32.71	19.27
SEP	31.95	43.29	42.47	30.85	31.97

Table 22. River TTHMFP Carbon (TFPC)

/1 Flow weighted TTHMFP carbon concentration of Delta inflow represents the theoretical THMFP carbon concentration in Delta channels.

The Department conducted a study from September 1981 through January 1982 to determine the sources of THM precursors in the Sacramento-San Joaquin Delta, Sacramento River and State Water Project. Conclusions from this investigation were that (1) agricultural drainage appears to be a significant source of precursors, (2) effluent of waste water treatment plants do not appear to be a major source and (3) aquatic vegetation was not a significant source at the places and times of sampling.

There has been research on the reaction of aqueous chlorine with proteins produced by algae in natural waters (Scully et al, 1988). The study was conducted on reservoirs in Colorado and Pennsylvania. One of the conclusions points out that algae may contribute about ten percent of the TTHMFP and the contribution may be higher during months of high algal growth. Obviously, algal growth does contribute THM precursors to Delta waters. The river water flowing into the Delta contains algae and additional algal growth occurs within the Delta. For this study, there are no data available to discriminate between the THM precursors that result from algal growth in the rivers or in the Delta.

Delta channel water losses due to evaporation and additions due to precipitation were not included in this analysis because of the broad assumptions required for the analysis. We believe that employing evaporation and precipitation factors would not significantly improve the calculations because these two factors have a somewhat countering effect.

The Delta islands or tracts were divided into two groups for comparison of organic carbon concentrations. One group consisted of the middle Delta peat soil islands and the other included the north and south areas overlying mineral and intermediate organic soil areas. Data from the 1954-55 report showed that the drainage volume from the middle Delta group (study units 18, 20 and 22) contributed about 46% of the total Delta drainage volume during the period June through August and about 32.5% from September through May. These percentages were used to proportion the carbon concentration of each group and provide a single value for each month (far right column of Table 23).

Islands or tracts in the middle Delta "peat" group included Empire, Bouldin, King, Rindge and Terminous. The north-south "mineral-intermediate organic" group included Grand, Tyler, Brannan, Egbert,

Upper Egbert, McCormack-Williamson, Pescadero, Prospect, Rio Blanco and Upper Jones.

TFPC data for the island drainages were categorized by group and month. All data collected from any island in the group for the same year and month were averaged to provide a single TFPC value for that group, year and month.

Table 23 calculations show peat island drains generally contain more THMFP carbon than the mineral-intermediate organic island drainages. This agrees with the higher TTHMFP concentrations observed in drainages from peat areas than from the mineral-intermediate organic areas, earlier DWR soil extract analyses for TTHMFP, and existing knowledge about the organic content of Delta soils.

Table 23. Delta Drainage TTHMFP Carbon (TFPC) (µg/L)

Month	Delta Isla	nd Groups	Proportioned Carbon
W.Y. 1988	Peat	Mineral- Intermed.	Org.
OCT	123.69	95.40	104.59
NOV	148.73	170.21	163.23
DEC	209.98	130.36	156.24
JAN	250.49	164.08	192.16
FEB	309.86	218.81	248.40
MAR	217.77	140.54	165.64
APR	212.24	105.42	140.14
MAY	217.64	143.04	167.29
JUN	392.24	111.48	242.03
JUL	198.97	84.30	137.62
AUG	242.01	97.77	164.84
SEP	338.92	114.45	187.40

Monthly TFPC concentrations, drainage volumes, and Sacramento, Mokelumne, Cosumnes and San Joaquin River volume data were used to compute the TFPC concentrations resulting from the addition of Delta drainage to the river water (Table 24).

Table 24. Delta TTHMFP Carbon (TFPC) Concentrations from Drainage

Estimates for W.Y. 1988

			Drainage	1954-55	Drainage
	Drainage	Rivers	Plus River	90% 14	110%
Month	/1 ug/l	/2 ug/l	/0 ug/l	ug/L	ug/L
	H9/ -	H8/C	F9/-	F-6/-	F-0/-
OCT	104.59	24.79	34.07	33.24	34.87
NOV	163.23	31.33	52.91	51.08	54.69
DEC	156.24	29.61	52.25	50.36	54.08
JAN	192.16	37.94	69.40	66.85	71.86
FEB	248.40	24.09	40.42	38.89	41.92
MAR	165.64	26.22	35.81	34.91	36.70
APR	140.14	16.69	29.24	28.10	30.35
MAY	167.29	22.14	38.47	37.01	39.91
JUN	242.03	26.95	56.61	54.02	59.13
JUL	137.62	21.13	33.80	32.66	34.92
AUG	164.84	19.27	33.51	32.21	34.78
SEP	187.40	31.97	43.37	42.30	44.42
Avg.	172.47	26.01	43.32	41.80	44.80
Min.	104.59	16.69	29.24	28.10	30.35
Max.	248.40	37.94	69.40	66.85	71.86

/1 Flow weighted TPFC concentration for island drainage (Table 23).

/2 Flow weighted TPFC concentration for Sacramento, Mokelumne, Cosumnes and San Joaquin rivers (Table 22).

/3 Flow weighted TPFC concentrations using 1954-55 island drainage volume and rivers. /4 Flow weighted TPFC concentrations using 90% of 1954-55 island drainage volume and rivers.

/5 Flow weighted TPFC concentrations using 110% of 1954-55 island drainage volume and rivers.

The computed amount of TPFC using 90, 100, and 110% of the 1954-55 drainage volume estimates in DWR Report No. 4 were not significantly different. The exact drainage volume, therefore, is not critical in this analysis to determine the increase of TTHMFP carbon from island drains.

The estimates show that in 1988, island drainage increased the TTHMFP carbon content of the river inflows by 35% to 110% (average 66%) depending on the month (Table 25). The highest estimated increase (100-119%) occurred in June and lowest in September (32-39%).

The 90% and 110% drainage volumes bracket the estimated 1988 drainage volumes and show the greatest TFPC increase of 119% and the lowest to be 32 % with an average range of 60% to 72%. Impact on export waters would depend on the month and the volume exported. The 1988 water year was classified as "critically dry", so the impact of Delta drainage is then expected to be greater than in "normal" runoff years.

Table 25. Estimated Delta TTHMFP Carbon (TFPC) Increases from Drainage

	1954-5	5 Drainage Volu	umes
	100%	90%	110%
Month	Percent	Percent	Percent
	Increase	Increase	Increase
OCT	37.39%	34.05%	40.66%
NOV	68.89%	63.03%	74.56%
DEC	76.47%	70.08%	82.64%
JAN	82.91%	76.17%	89.38%
FEB	67.81%	61.48%	74.06%
MAR	36.59%	33.16%	39.98%
APR	75.14%	68.32%	81.82%
MAY	73.81%	67.18%	80.28%
JUN	110.03%	100.41%	119.38%
JUL	59.97%	54.56%	65.25%
AUG	73.93%	67.19%	80.53%
SEP	35.63%	32.30%	38.91%
AVG	66.55%	60.66%	72.29%
MIN	35.63%	32.30%	38.91%
MAX	110.03%	100.41%	119.38%

These estimated TFPC increases to river waters from drainage are shown in Table 26 which estimates the proportion of TFPC in Delta waters that came from drainage.

Table 26. Estimated Proportion of Drainage TFPC in Delta Waters

Estimated values in percent for drought year W.Y. 1988

Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
27	41	43	45	40	27	43	27	52	38	43	26

The estimates show that drainage contributed 40% to 45% of the TFPC in the Delta during the irrigation months (April August) and 38% to 52% during the winter leaching period (November February) during W.Y. 1988.

An important question is whether island soils actually contribute TTHMFP carbon, or whether increased THM carbon in drainage only reflects concentration due to evaporation and transpiration (ET) of the water as it passes through the agricultural cycle.

During the growing season, water losses from ET occur and therefore, salt concentrations in some drains (assuming no island salt source) are expected to increase due to these concentration effects. However, to date there are no data to indicate that organic THM precursor material behaves similarly to inorganic salts. Organic compounds exhibit different chemical behavior and physical properties than salts and, therefore, cannot be adequately modeled using salinity models developed for TDS and mineral ions. The distinct characteristics between drain and riverine humics as discussed previously (Amy et al 1990) support these conclusions.

TTHMFP carbon concentrations based on measured TTHMFP data were averaged for selected Delta monitoring stations to provide a comparison with the estimated TTHMFP carbon values. The stations included the Banks Headworks, Sacramento River at Mallard Island, Clifton Court Forebay intake, and Middle River at Borden Highway. They were selected with the thought that when the values were averaged, they would be representative of the average Delta channel TTHMFP carbon concentrations. The results are shown in Table 27. A comparison of the estimated TFPC values and the observed average TFPC values is presented in Table 28.

Table 27. Measured TTHMFP Carbon (TFPC) at Selected Delta Stations

Monthly	Banks Headworks (µg/L)	Mallard Isl. at Sac. Rv. (µg/L)	Clifton Court Intake (µg/L)	Middle River at Borden Highway (µg/L)	Monthly Average (µg/L)	
OCT	28.99	32.28	38.31	35.88	33.86	
NOV	36.32	45.58	33.34	42.01	39.32	
DEC	50.12	47.13	43.51	56.60	49.34	
JAN	56.29	47.09	62.32	73.04	59.68	
FEB	79.33	70.41	78.10	29.24	64.27	
MAR	41.18	58.04	40.64	33.64	43.38	
APR	29.71	34.69	38.41	45.36	37.04	
MAY	54.40	44.98	56.48	47.40	50.82	
JUN	39.53	37.43	48.02	37.67	40.66	
JUL	62.38	52.04	52.64	58.14	56.30	
AUG	57.08	65.76	37.74	44.63	51.30	
SEP	38.47	38.07	39.34	39.22	38.77	
AVG	48.67	48.67	48.14	45.78	47.82	
MIN	28.99	32.28	33.34	29.24	33.86	
MAX	79.33	70.41	78.10	73.04	64.27	

Table 28. Comparison of Estimated Drainage THMFP Carbon (TFPC) Impact to Observed Data

Month	Estimated Rivers plus Drainages /1 (µg/L)	Station Monthly Average /2 (µg/L)	Differences /3 (µg/L)	Percent of Station Averages /4
OCT	34.07	33.86	-0.20	99.41%
NOV	52.91	39.32	-13.60	74.30%
DEC	52.25	49.34	-2.91	94.43%
JAN	69.40	59.68	-9.72	86.00%
FEB	40.42	64.27	23.85	159.00%
MAR	35.81	43.38	7.57	121.13%
APR	29.24	37.04	7.81	126.71%
MAY	38.47	50.82	12.34	132.08%
JUN	56.61	40.66	-15.95	71.82%
JUL	33.80	56.30	22.50	166.57%
AUG	33.51	51.30	17.79	153.10%
SEP	43.37	38.77	-4.59	89.41%
ANNUAL				
AVG	43.32	47.82	4.50	
MIN	29.24	33.86	4.62	
MAX	69.40	64.27	5.13	

/1 Estimated Delta TFPC levels from river plus drainage data using the 1954-55 drainage volume (Table 24)

/2 Delta monitoring stations, average TFPC levels from Table 27

/3 Computed difference of monitoring station average (Table 27) minus estimated river + drainage TFPC levels (Table 24). Numbers are rounded off values.

/4 Percent estimated is computed by dividing the observed monthly station average by the river + drainage estimate.

The estimates appear to be reasonable as the annual average, minimum, and maximum estimates were $4 \mu g/L$ to $5 \mu g/L$ of their respective observed values. Overall, the estimates averaged 14.5% higher than the observed mean values based on data from the four Delta stations.

Figures 29 and 30 are plots of the estimated and measured TTHMFP carbon (TFPC) concentrations for the Delta. The measured values are based on the average of monthly observations recorded at 4 IDHAMP Delta stations (Banks Headworks, Clifton Court Forebay intake, Sacramento River at Mallard Island, and Middle River at Borden Highway). Also included on the plots are the flow weighted river TTHMFP carbon (TFPC) values based on data from the Sacramento River at Greenes Landing, San Joaquin River near Vernalis, Cosumnes, and Mokelumne rivers. The estimated Delta TFPC concentrations are based on the previously described calculations for drainage concentrations mixed with flow weighted river values.

One problem of comparing the estimated data with the measured data is that the samples for island drainage, river water and Delta channel water were collected at different times of the month. Although all of the data being compared was collected in the same month, in some cases, but not all, the data used to make the estimates may have been collected one to three weeks prior to the measured data.

Figure 29 shows the data plotted on a regular monthly basis. In order to compare the effects of a time delay, Figure 30 shows the estimated TTHMFP carbon concentration plotted on the month in which the data were collected but the measured TTHMFP carbon concentration is offset by one month. This means that the measured value plotted for October in Figure 30 is the value that was actually measured in November.

Figure 31 is the same plot as Figure 29 but the "Y" scale is TFPC as chloroform. In this figure, the TTHMFP carbon (TFPC) was computed to equivalent chloroform by weight.

In summary, the figures indicate a good start in the approach of estimating the potential contribution of TTHMFP carbon from Delta island drainages and from the rivers during drought year hydrology. Further work is needed to improve the method of determining the level of impact that drainage has on diverted Delta waters used for drinking water supplies. This work is described in the Recommendations section of this report.

Figure 29. Estimated vs. Measured THMFP Carbon (TFPC) Values

TTHMFP Carbon (TFPC) - micrograms per liter

TTHMFP Carbon (TFPC) - micrograms per liter

TFPC as Chloroform - micrograms per liter

References

- Amy, G.L., personal communication to Bruce Agee, 4/20/90.
- Amy, G.L., Chadik, P.A., and Chowdhury, Z.K., 1987, Developing Models for Predicting Trihalomethane Formation Potential and Kinetics, Journal of the American Water Works Association, Vol. 79, No. 7, pp. 89-97.
- Amy, G.L., Thompson, J.M., Tan, L., Davis, M. K., and Krasner, S.W., Evaluation of THM Precursor Contributions From Agricultural Drains, Journal of the American Water Works Association, Vol. 82, No. 1, pp. 57-64.
- DWR Office Memorandum, John Kono crop acreage estimates, May 31, 1985.
- DWR Office Memorandum, Jim Snow to Richard Jones, "New Flow Equations for the San Joaquin River at Stockton and for Old and Middle Rivers, April 17, 1986.
- Eisma, D., Cadee, G.C., and Laane, R., 1982, Supply of suspended matter and particulate and dissolved organic carbon from the Rhine to the Coastal North Sea, In: SCOPE/UNEP Transport of Carbon and Minerals in Major World Rivers, 52, (Degens, E.T., ed.), pp. 483-505, University of Hamburg, Hamburg.
- Ghassemi, M. and Christman, R. F., 1968, Properties of the yellow organic acids of natural waters; Limnology and Oceanography, 13: 583-597.
- Laaane, R.W.P.M., 1980, Conservative behavior of dissolved organic carbon in the Ems-Dollart estuary and the western Wadden Sea: Netherlands Journal of Sea Research, 14, 192-199.
- Loder, T.C. and Hood, D.W., 1972, Distribution of organic carbon in a galacial estuary in Alaska: Limnology and Oceanography, 17, 349-355.
- Mantoura, R.F.C., and Woodward, E.M.S., 1983, Conservative behavior of riverine dissolved organic carbon in the Severn Estuary: Chemical and geochemical implications: Geochimica et Cosmochima Acta, 47, 1293-1309.
- Moore, R.M., Burton, J.D., Williams, P.J., and Young, M.L., 1979, The behaviour of dissolved organic material, iron, and manganese in estuarine mixing: Geochemical et Cosmochicmica Acta, 43, 919-926.
- Oliver, B. G. and Thurman, E.M., 1983, Influence of aquatic humic substance properties on trihalomethane potential, In: Water Chlorination Environmental Impact and Health Effects, Volume 4, Book 1, Chemistry and Water Treatment, (Jolley, R.L., Brungs, W.A., Cotruvo, J.A., Cumming, R.B., Mattice, J.S., and Jacobs, V.A., eds.) pp. 231-241, Ann Arbor Science, Ann Arbor.

Rook, J.J., 1977, Chlorination reactions of fulvic acids in natural waters: Environmental Science and Technology, 11, 478-482.

Sato, G., personal communication to Bruce Agee, 4/19/90.

- Saunders, G.W., 1976, Decomposition in freshwater, In: the Role of Terrestrial and Aquatic Organisms in Decompositon Processes, 17th Symposium of the British Ecological Society, (Anderson, J.M. and Macfayden, A., eds.), pp. 341-373, Blackwell Scientific, Oxford.
- Scully, F.E., Jr., Howell, G.D., Kravitz, R., Jewell, J.T., Hahn,V. and Speed, M., 1988, Proteins in Natural Waters and Their Relationship to the Formation of Chlornated Organics during Water Disinfection, Environmental Science and Technology, 22, no. 5, 537-542.

1

The second

- Sholkovitz, E.R. and Copland, D., 1981, The coagulation, solubility, and adsorption properties of Fe, Mn, Cu, Ni, Cd, Co, and humic acids in a rivr water: Geochimica et Cosmochimica Acta, 45, 181-189.
- Sholkovitz, E.R., 1978, The flocculation of dissolved Fe, Mn, Al, Cu, Ni, Co, and Cd during estuarine mixing: Earth and Planetary Science Letters, 40, 77-86.
- Sholkovitz, E.R., 1976, Flocculation of dissolved organic and inorganic matter during the mixing of river water and seawater: Geochimica et Cosmochimica Acta, 40, 831-845.
- Thurman, E.M., Wershaw, R.L., Malcolm, R.L., and Pinckney, D.J., 1982, Molecular size of aquatic humic substances, Organic Geochemistry, 4, pp. 27-35.
- Thurman, E. M., Organic Geochemistry of Natural Waters, Martinus Nijhoff/Dr W. Junk Publishers, 1985.
- Thurman, E.M., 1985, Humic substances in ground water, In: Humic Substances I. Geochemistry, characterization, and isolation, (Aiken, G.R., McCarthy, P., McKnight, D., and Wershaw R., eds.), John Wiley and Sons, Inc., New York.
- U.S. Department of Agriculture, Bureau of Plant Industry, 1941, Soil Survey--The Sacramento-San Joaquin Delta Area California, Superintendent of Documents, Washington, D.C.
- Weber, J. H. and Wilson, S. A., 1975, The isolation and characterization fulvic acid and humic acid from river water: Water Research, 9, 1079-1084.

Glossary of Acronyms

Summer of the

Contraction of the

and and

1

T

1

IDHAMP DIDI	Interagency Delta Health Aspects Monitoring Program
TTHMFP	Total Trihalomethane Formation Potential
DBP	Disinfection By-products
THM	Trihalomethanes
MCL	Maximum Contaminant Level
EPA	U.S. Environmental Protection Agency
MWDSC	Metropolitan Water District of Southern California
CCWD	Contra Costa Water District
SWP	State Water Project
CVP	Central Valley Project
TFPC	TTHMFP carbon

Appendix A

Delta Island Drainage Investigation Station Names

Short Name	Full Name
AGDCLIFTON	Ag Drain on Clifton Court
AGDEMPIRE	Ag Drain on Empire Tract, W.end 8-Mi.Rd.
AGDGRAND	Ag Drain on Grand Island
AGDTYLER	Ag Drain on Tyler Island
BOULDIN1	Ag Drain on Bouldin Tract, PP. No. 1
BOULD IN2	Ag Drain on Bouldin Tract, PP. No. 2
BRANNANPP01	Ag Drain on Brannan Island, PP. No. 1
BRANNANPP02	Ag Drain on Brannan Island, PP. No. 2
BRANNANPP03	Ag Drain on Brannan Island, PP. No. 3
BRANNANPP04	Ag Drain on Brannan Island, PP. No. 4
EGBERTPP01	Ag Drain on Egbert Tract, PP. No. 1
EGBERTPP02	Ag Drain on Egbert Tract, PP. No. 2
KINGISPP01	Ag Drain on King Island, PP. No. 1
KINGISPP02	Ag Drain on King Island, PP. No. 2
KINGI SPP03	Ag Drain on King Island, PP. No. 3
MCCOBWIL01	Ag Drain on McCormack/Williams Tr. No.1
MCCOBWIL02	Ag Drain on McCormack/Williams Tr. No.2
MOSSDALE01	Ag Drain on Mossdale Tract, PP. No. 1
MOSSDALE02	Ag Drain on Mossdale Tract, PP. No. 2
MOSSDALE03	Ag Drain on Mossdale Tract, PP. No. 3
MOSSDALE04	Ag Drain on Mossdale Tract, PP. No. 4
MOSSDALE05	Ag Drain on Mossdale Tract, PP. No. 5
MOSSDALE06	Ag Drain on Mossdale Tract, PP. No. 6
MOSSDALE08	Ag Drain on Mossdale Tract, PP. No. 8
MOSSDALE09	Ag Drain on Mossdale Tract, PP. No. 9
MOSSDALE10	Ag Drain on Mossdale Tract, PP. No. 10
MOSSDALE11	Ag Drain on Mossdale Tract, PP. No. 11
MOSSTRPP01	Ag Drain on Moss Tract, PP. No. 1
MOSSTRPP02	Ag Drain on Moss Tract, PP. No. 2
MOSSTRPP03	Ag Drain on Moss Tract, PP. No. 3
NETHERLANDO1	Ag Drain on Netherland Tr., PP. No. 1
NETHERLANDO2	Ag Drain on Netherland Tr., PP. No. 2
PESCADERO01	Ag Drain on Pescadero Tr., PP. No. 1
PESCADERO02	Ag Drain on Pescadero Tr., PP. No. 2
PESCADER003	Ag Drain on Pescadero Tr., PP. No. 3
PESCADERO04	Ag Drain on Pescadero Tract, PP. No. 4
PIERSONPP01	Ag Drain on Pierson Tr., PP. No. 1
PROSPECTPP01	Ag Drain on Prospect Island, PP. No. 1
PROSPECTPP02	Ag Drain on Prospect Island, PP. No. 2
RINDGEPP01	Ag Drain on Rindge Tract, PP. No. 1
RINDGEPP02	Ag Drain on Rindge Tract, PP. NO. 2
BIOBLANCO01	Ag Drain on Rio Blanco Tr., PP. No. 1
RIOBLANCO02	Ag Drain on Rio Blanco Tr., PP. No. 2
SHIMATR	Ag Drain on Shima Tract
TERMPPO1	Ag Drain on Terminous Tract, PP. No. 1
TERMPP02	Ag Drain on Terminous Tract, PP. No. 2
UPEGBERTPP01	Ag Drain on Upper Egbert Tr., PP. No. 1
UPEGBERTPP02	Ag Drain on Upper Egbert Tr., PP. No. 2
UPEGBERTPP03	Ag Drain on Upper Egbert Tr., PP. No. 3
UP JONESPP01	Ag Drain on Upper Jones Tr., PP. No. 1
UP JONESPP02	Ag Drain on Upper Jones Tr., PP. No. 2
나라는 관람이라게 들어갔다. 이 것	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

自

1

行

THM	DATA	REPORT

												<	- THMFor	mation P	otenti	al>
				TEMP	pH	DO	EC 1	TURB	COLOR	TOC	DOC	CHC13 C	HBrC12 0	CHBr2CI	CHBr3	TTHMFP
LAB#	STA. NAME	SAMP.DATE	TIME	OC		mg/L	uS/cm T	.U.	C.U.	mg/L	mg/L	<		ug/L -		>
8157	AGDCL LETON	03/08/88	14.15	18 7	6.0	9.2	3510	33	80	9 1		460	480	300	110	1400
8258	AGDCL IFTON	04/18/88	13:45	17.6	7.1	4.7	5100	1 3	80 50) 6	.0			000		1100
8342	AGDCL IFTON	05/09/88	11:04	18.9	7.4	6.9	6460	26	80		7.6	210	540	840	430	2000
5011	AGDEMP IRE	02/06/85	9:05	6.0	7.3	9.8	2610	26	25		1000	1500	920	930	81	3400
5027	AGDEMP IRE	03/06/85	9:45	10.5	7.3	7.6	2330	1	4			10.00				
5045	AGDEMP IRE	04/05/85	8:50	21.5	7.3	3.9	2180	10	75			1800	920	370	31	3100
5061	AGDEMP IRE	05/01/85	8:30	20.0	7.6	6.5	2280	14	160			1800	900	440	29	3200
5077	AGDEMP IRE	06/05/85	8:07	20.0	7.3	4.0	629	15	75			1800	280	25	-1	2100
5107	AGDEMP IRE	07/24/85	9:07	23.0	6.8	4.1	472	10	40			2100	140	19	-1	2300
5112	AGDEMP IRE	08/01/85	8:25	22.0	6.8	5.5	360	8	100			2100	150	10	-1	2300
5128	AGDEMP IRE	09/11/85	10:20	19.5	6.9	4.5	886	4	150			3000	460	48	2	3500
5138	AGDEMP IRE	10/02/85	7:00	18.0	7.6	7.6	1640	10	50			2200	790	330	26	3300
5162	AGDEMPIRE	11/13/85	8:00	7.0	7.3	9.0	1880	4	80			2100	920	390	40	3500
5181	AGDEMPIRE	12/03/85	17:10	14.0	7.0	5.4	1070	8	200			2900	360	44	1	3300
6003	AGDEMPIRE	01/16/86	11:45	12.0	6.8	5.8	1087	3	160			6900	490	67	1	7500
6017	AGDEMP IRE	02/13/86	12:00	14.0	6.8	6.7	1880	11	150			2600	650	170	8	3400
6028	AGDEMPIRE	03/04/86	13:30	19.5	7.3	8.0	2840	7	200			1500	660	210	14	2400
6046	AGDEMPIRE	04/17/86	9:15	15.0	7.4	8.8	1610	10	160			1900	830	320	13	3100
6081	AGDEMP IRE	05/13/86	10:00	21.5	7.5	6.6	2000	15	150			570	330	160	15	1100
6112	AGDEMP IRE	06/11/86	8:00	22.0	8.1	5.7	2760	14	80			410	310	230	48	1000
6131	AGDEMP IRE	07/09/86	8:05	20.5	6.9	5.4	283	10	100			1400	94	4	-1	1500
6198	AGDEMPIRE	09/11/86	7:50	20.5	7.3	5.2	2120	10	80			1400	1000	620	78	3100
5283	AGDEMP IRE	11/19/86	10:30	16.0	6.3	2.3	808	3	360		56.0	5300	120	5	-1	5400
6300	AGDEMPIRE	12/10/86	11:30	12.0	6.3	3.0	866		4 280	48.	0					
7008	AGDEMPIRE	01/13/87	11:15	7.5	6.3	1.7	996	3	300	60.0		3200	190	23	15	3400
7046	AGDEMPIRE	02/10/87	10:00	11.5	6.6	3.5	1660	8	200	54.0		2900	410	160	6	3500
7069	AGDEMPIRE	03/10/87	10:50	13.5	6.8	3.0	2390	124	120	33.0		1100	72	95	15	1300
172	AGDEMP IRE	04/16/87	8:30	21.5	7.5	7.2	2510	17	125	28.0		2900	1300	500	74	4800
196	AGDEMPIRE	05/06/87	6:15	23.0	7.9	7.5	1.222.211	-		28.0		1200	740	570	200	2700
207	AGDEMPIRE	05/27/87	8:30	19.5	6.6	5.3	408	14	200	20.0		2900	200	12	-1	3100
245	AGDEMP IRE	06/11/87	9:30	21.0	6.9	6.4	503	19	60	10.0		960	130	17	-1	1100
406	AGDEMPIRE	09/24/87	8:15	19.3	7.3	3.6	2960	9	100		18.0	1200	780	570	130	2700
478	AGDEMPIRE	10/19/87	7:00	16.0	7.1	2.0	1720	9	60	16.0		960	560	230	36	1800
450	AGDEMP IRE	10/28/87	9:10								20.0	1320	638	183	25	2200
449	AGDEMP IRE	10/28/87	9:10	19.0	7.2	2.1	1340	16	80	22.0		1010	471	119	22	1600
547	AGDEMP IRE	11/24/87	9:30	12.5	7.2	8.1	312	24	60	12.0		1500	39	1	1	1500
548	AGDEMPIRE	11/24/87	9:30								12.0	1400	41	1	1	1400
578	AGDEMPIRE	12/10/87	9:54	13.5	6.2	4.9	594	5	250	58.0		2590	139	3	-1	2700
606	AGDEMPIRE	12/16/87	8:45								94.0	2400	140	6	-1	2500
607	AGDEMPIRE	12/16/87	8:45	8.2	6.5	6.2	695	11	250	65.0		2790	130	6	-1	2900
026	AGDEMPIRE	01/12/88	9:00	9.2	6.3	4.7	1010	8	350	59.0		3300	240	14	-1	3600
075	AGDEMPIRE	01/21/88	9:05	8.6	6.4	6.5	1720	4	250	55.0	50.0	3400	480	55	-1	3900
0/4	AGUEMPIRE	01/21/88	9:05	8.6	6.4	6.5					56.0	3800	490	35	-1	4300
132	AGDEMPTRE	02/23/88	8:50	11.0	0.0		1000		250	70.0	62.0	1800	400	85	4	2300
133	AGDEMPIRE	02/23/88	8:50	11.3	0.8	5.4	1980	14	350	12.0		3100	790	140	6	4000
101	AGUEMPTRE	03/09/88	9:35	13.7	1.1		1910	13	200	48.0		2700	000	120	8	3500

Note: Negative values signify reporting limits. Concentration of analyte below reporting limit.

· Martin

(Carl)

1

-

Internet

1

1

10000

The second

Page 1

AD	OF	'NIT	IV	D
Ar	٢С	UN.	1.	D

The second

領導

The second

1

1

and and a

Constant of

1

1200

880

960

3000

3600

1800

3400

1800

670

480

1400

270

340

1400

2000

2500

Page	2							THM (DATA R	EPORT						
								-				<	- THMFor	mation P	otenti	al>
				TEMP	pH	DO	EC	TURB	COLOR	TOC	DOC	CHC13 C	HBrC12 (CHBr 2CI	CHBr3	TTHMFP
LAB#	STA. NAME	SAMP.DATE	TIME	OC		mg/L	uS/cm	T.U.	C.U.	mg/L	mg/L	<		ug/L -		>
8224	AGDEMPIRE	03/23/88	8:30								47.0	4300	220	16	-1	4500
8223	AGDEMP IRE	03/23/88	8:30	16.8	7.0	9.1	811	9	320	49.0		2600	170	14	-1	2800
8322	AGDEMP IRE	04/28/88	8:25	16.1	6.6	5.3	631	7	300	64.0		2000	73	4	-1	2100
8323	AGDEMP IRE	04/28/88	8:25								63.0	2100	92	5	-1	2200
8346	AGDEMP IRE	05/09/88	7:12	20.1	7.2	6.5	926	4	400		59.0	3900	270	-1	-1	4200
8400	AGDEMP IRE	05/26/88	7:30								46.0	3600	460	27	-1	4100
8399	AGDEMP IRE	05/26/88	7:30	18.8	7.5	1.1	1000	9	400	44.0		2900	400	28	8	3300
8431	AGDEMP IRE	06/22/88	6:27	22.3	7.3	2.6	674	7	240	24.0		3400	310	11	-1	3700
8432	AGDEMP IRE	06/22/88	6:27	23.0	6.8	0.6					31.0	3900	370	11	-1	4300
8467	AGDEMP IRE	07/14/88	8:55	23.0	6.8	0.6	1420				35.0	3900	320	17	1	4200
8466	AGDEMP IRE	07/14/88	8:55	23.0	6.8	0.6	1420	6	400	71.0		3600	180	15	-1	3800
8482	AGDEMP IRE	07/18/88	6:40	22.5	7.0	0.4	792	3	240		35.0	2500	260	16	-1	2800
8589	AGDEMP IRE	08/16/88	7:59	21.3	6.9	2.3	537				36.0	3100	270	9	-1	3400
8588	AGDEMP IRE	08/16/88	7:59	21.3	6.9	2.3	537	7	280	34.0		3400	250	8	-1	3700
8701	AGDEMP IRE	09/22/88	6:35	16.6	7.2	2.0					32.4	2500	1000	330	15	3800
8700	AGDEMP IRE	09/22/88	6:35	16.6	7.2	2.0	2140	7	140	33.5		2400	1000	320	18	3700
8730	AGDEMP IRE	10/20/88	7:45	19.2	5.9	2.4	1180				75.0	2300	200	17	-1	2500
8729	AGDEMP IRE	10/20/88	7:45	19.2	5.9	2.4	1180	5	280	77.0		1600	250	14	-1	1900
8752	AGDEMP IRE	11/10/88	8:25	16.0	6.8	4.2					66.0	2400	440	56	-2	2900
8751	AGDEMP IRE	11/10/88	8:25	16.0	6.8	4.2	1350	4	320	69.0		1800	330	64	-1	2200
8835	AGDEMP IRE	12/20/88	9:00	14.7	6.8	3.9					60.0	2600	140	6	-1	2700
8834	AGDEMP IRE	12/20/88	9:00	14.7	6.8	3.9	585	4	320	61.0		2600	140	5	-1	2700
5012	AGDGRAND	02/06/85	10:30	11.5	7.1	7.5	576	34	25			2100	32	4	-1	2100
5028	AGDGRAND	03/06/85	11:00	12.5	6.9	5.3	46	8 2	1							
5046	AGDGRAND	04/05/85	10:00	18.5	7.3	5.0	625	30	80			2000	100	4	-1	2100
5062	AGDGRAND	05/01/85	9:45	18.5	6.9	5.7	310	26	50			1000	41	-1	-1	1000
5078	AGDGRAND	06/05/85	9:15	21.0	7.3	6.6	265	22	35			840	37	-1	-1	880
5108	AGDGRAND	07/24/85	7:15	22.5	7.2	5.5	267	70	80			1800	60	2	-1	1900
5113	AGDGRAND	08/01/85	9:45	21.5	7.1	6.5	273	30	50			1300	49	1	-1	1400

502 504 506 507 510 5113 AGUGRANU 08/01/85 9:45 21.5 1.1 6.5 2/3 50 1300 -1 30 49 7.2 5126 AGDGRAND 09/11/85 11:50 19.5 6.1 451 28 30 1100 94 8 -1 5139 AGDGRAND 10/02/85 9:00 19.0 7.2 6.0 327 25 30 820 56 3 -1 AGDGRAND 11/13/85 12.5 7.3 4.5 368 35 890 5164 9:45 16 69 3 -1 5183 AGDGRAND 12/03/85 18:45 13.0 7.0 3.8 100 2800 735 31 160 5 -1 AGDGRAND 6005 01/16/86 13:15 13.5 7.3 7.3 716 26 80 3500 130 6 -1 AGDGRAND 6020 02/27/86 11:30 17.5 7.0 4.4 602 24 100 1700 83 2 -1 6036 AGDGRAND 03/13/86 13:00 14.5 6.6 5.8 1060 22 160 5 3200 180 -1 513 6051 AGDGRAND 04/23/86 12:00 18.5 7.3 7.6 54 50 1700 2 -1 82 05/28/86 22.5 7.4 36 50 6086 AGDGRAND 11:15 7.3 323 640 29 3 1 6118 AGDGRAND 06/25/86 12:00 24.5 7.2 6.8 290 35 40 450 30 2 1 AGDGRAND 07/23/86 11:15 22.5 7.1 6.0 210 24 40 6138 AGDGRAND 6159 08/27/86 11:45 23.5 7.2 7.6 250 24 1400 35 50 -1 -1 6206 AGDGRAND 09/09/86 11:00 18.5 7.1 3.0 378 18 15 240 30 3 -1 5 -1 6286 AGDGRAND 11/19/86 7:50 14.5 7.3 5.8 237 14 1.7 320 16 2 8:00 10.0 6302 AGDGRAND 12/10/86 7.1 8.1 366 30 50 11.0 1400 -1 30 -1 7013 AGDGRAND 01/13/87 8:05 7.0 7.1 7.9 458 21 80 14.0 1900 56 2 2 38 75 7041 AGDGRAND 02/10/87 7:30 14.5 7.2 7.4 559 20.0 2400 77 -1 -1

Note: Negative values signify reporting limits. Concentration of analyte below reporting limit.

							APPEI		Б							
Page	3							THM (DATA R	EPORT						
				TEUD	all	00	50	TUDD		TOC	000	<	THMFO	rmation F	otenti	al>
1 48.	STA NAME	SAMO DATE	TINE	of	рп	ma /l	US/cm	TI	CIL	ma/l	ma/l	Churs (GIDICIZ		UNDI 3	TITAMEF
LAD#	STA. TRAME	SAME .DATE				шу/ L		1.0.			шу/ L			- ug/L		
7076	AGDGRAND	03/10/87	7:45	13.0	7.1	6.6	852	76	120	28.0		1300	74	2	3	1400
7079	AGDGRAND	03/10/87	7:45				853	66	120	28.0		1400	67	2	3	1500
7179	AGDGRAND	04/16/87	6:30	17.0	7.0	6.2	358	28	30	7.8		1400	79	5	-1	1500
7214	AGDGRAND	05/20/87	6:30	17.0	7.3	8.2	251	38	30	5.4		800	30	-1	-1	830
7213	AGDGRAND	05/20/87	6:30	17.0	7.3	8.2	251	38	30		5.4	650	34	-1	-1	830
7252	AGDGRAND	06/11/87	6:40	20.0	7.3	6.3	398	29	30	5.5		920	62	5	-1	990
7390	AGDGRAND	09/03/87	9:30	23.1	7.3	5.0	499	22	35	7.8		1200	58	7	-1	1300
7437	AGDGRAND	10/08/87	6:30								6.8	980	45	1	-1	1000
7431	AGDGRAND	10/08/87	6:30	16.5	7.3	7.2	364	30	40	6.3		810	47	1	2	860
7435	AGDGRAND	10/08/87	6:30				340	30	40	6.3		1200	38	-1	-1	1200
7433	AGDGRAND	10/08/87	6:30								6.9	840	31	1	-1	870
7534	AGDGRAND	11/03/87	7:20	13.5	7.2	7.0	441	29	60	13.0		2400	73	1	-1	2500
7535	AGOGRAND	11/03/87	7.20								15.0	890	61	1	-1	950
7557	AGDGRAND	12/01/87	7.30	10.6	73	91	436	26	60	15.0	10.0	1900	43	2	3	1900
7558	AGOGRAND	12/01/87	7.30	10.0	1.0	0.1	100	20		10.0	14 0	1600	49	3	-1	1700
8007	AGOGRAND	01/06/88	8-25	92	71	8 1	832	56	160	29.0	11.0	2500	86	4	2	2600
3008	ACTICRAND	01/06/88	8.25	0.2		0.1	002	00	100	20.0	30.0	2300	80	3	-1	2400
8114	ACDCRAND	02/18/88	7.30	93	7 2	8.8	642	26	100	17.0	00.0	2100	110	4	_1	2200
0119	ACDCRAND	02/10/00	7.20	5.5	1.2	0.0	042	20	100	17.0	17.0	2100	08	4	-1	2200
0113	ACDCDAND	02/10/00	7.10								5.4	720	25	25	-1	770
0212	AGDGRAND	02/10/00	7:19	12.0	7 1	0 0	224	21	60	6.2	5.4	060	20	25	-1	000
0211	AGDGRAND	04/14/00	7:19	13.0	1.1	0.0	324	51	00	0.3	7.2	040	30	. 1	-1	990
0240	AGUGRAND	04/14/00	7:40	15 1	6.0	7 2	261			7 1	1.2	1100	33	3	-1	1100
0247	AGDGRAND	05/10/00	7:40	15.1	0.9	1.5	301			1.1	E C	760	41	3	3	700
8393	AGDGRAND	05/19/88	0:00	10.0	7.4	0.7	070	07	00	0.0	5.0	1100	31	1	-1	/90
8392	AGUGRAND	05/19/88	0:50	18.2	7.4	0.7	278	21	80	0.0	5.0	1100	35	1	1	1100
8415	AGUGRANU	06/07/88	b:17	15.8	1.1	0.5	308			5.0	5.9	820	34	1	Z	860
8414	AGUGRAND	06/07/88	6:17	15.8	7.1	6.5	308	38	60	5.8		1400	29	-4	-4	1400
8450	AGUGRAND	07/06/88	6:54	20.0	7.0	5.7	2/6	07	-		8.0	890	23	-1	-1	910
8449	AGDGRAND	07/06/88	6:54	20.0	7.0	5.7	276	27	60	1.4		1200	19	-1	-1	1200
8571	AGDGRAND	08/02/88	8:10	18.8	7.4	6.4			60	5.6		740	22	-1	-1	760
8572	AGDGRAND	08/02/88	8:10	100	0.0	215					6.1	720	24	-1	-1	740
8692	AGDGRAND	09/15/88	6:55	18.8	6.9	5.2					10.8	1100	52	2	-1	1200
8691	AGDGRAND	09/15/88	6:55	18.8	6.9	5.2	363	24	70			1100	50	6	-1	1200
8721	AGDGRAND	10/13/88	7:00	15.6	7.2	6.7					17.4	1400	41	-1	-1	1400
8720	AGDGRAND	10/13/88	7:00	15.6	7.2	6.7	409	32	150	19.6		2100	47	-1	-1	2100
8759	AGDGRAND	11/17/88	8:09	9.9	7.2	8.6					12.0	1200	60	7	-1	1300
8758	AGDGRAND	11/17/88	8:09	9.9	7.2	8.6	398	28	120	14.0		1500	54	6	-1	1600
8804	AGDGRAND	12/06/88	7:40	10.8	7.2	9.2	370	23	100	12.0		1400	63	1	-1	1500
8805	AGDGRAND	12/06/88	7:40	10.8	7.2	9.2					14.0	1300	35	1	-1	1300
5038	AGDTYLER	03/27/85	12:45	11.5	6.8	7.8	743	3 29	3							
5053	AGDTYLER	04/24/85	12:30	19.5	7.3	5.8	743	28	100			2100	260	27	-1	2400
5074	AGDTYLER	05/22/85	11:30	21.5	7.2	4.7	320	17	70			1800	91	4	-1	1900
5090	AGDTYLER	06/26/85	11:15	24.0	6.8	5.5	188	18	50			1400	45	3	-1	1400
5105	AGDTYLER	07/10/85	12:00	25.5	7.0	4.5	189	17	100			1600	51	1	-1	1700
5124	AGDTYLER	08/28/85	12:00	23.5	7.3	6.7	299	9	100			2100	78	3	-1	2200
5135	AGDTYLER	09/11/85	11:15	19.5	7.2	6.1	354	10	50			2200	-1	6	-1	2200

Note: Negative values signify reporting limits. Concentration of analyte below reporting limit.

APPENDIX

STATES -

1

1

3

Page 4

THM DATA REPORT

												<	- THMFor	mation P	otentia	>
				TEMP	pН	DO	EC	TURB	COLOR	TOC	DOC	CHC13 CH	HBrC12 (CHBr2CI	CHBr3	TTHMFP
LAB#	STA. NAME	SAMP.DATE	TIME	00		mg/L	uS/cm	T.U.	C.U.	mg/L	mg/L	<		ug/L -		>
5150	AGDTYLER	10/02/85	8:00	17.5	6.9	3.2	289	14	100			1200	70	2	-1	1300
5163	AGDTYLER	11/13/85	9:00	6.0	6.8	8.1	376	11	160			2000	120	2	-1	2100
5182	AGDTYLER	12/03/85	18:00	12.5	7.0	3.7	587	12	100			2100	85	2	-1	2200
6004	AGDTYLER	01/16/86	12:45	11.0	6.9	4.6	476	9	120			3500	83	8	-1	3600
6127	AGDTYLER	06/11/86	9:15	19.5	7.3	7.9	158	768	240			1300	66	4	1	1400
5133	AGDTYLER	07/09/86	9:30	23.5	7.3	0.5	966	18	400			1400	160	13	-1	1600
5200	AGDTYLER	09/11/86	9:45	20.5	7.3	5.5	369	38	100			2200	100	3	-1	2300
284	AGDTYLER	11/19/86	8:45	14.0	7.1	4.4	804	21	150		26.0	4100	180	13	-1	4300
304	AGDTYLER	12/10/86	8:55	9.0	7.3	10.4	829	26	60	23.0		3700	310	23	-1	4000
010	AGDTYLER	01/13/87	9:00	6.0	7.1	7.6	746	29	120	20.0		2100	100	5	-1	2200
7043	AGDTYLER	02/10/87	8:30	12.5	6.9	5.5	647	25	100	24.0		2200	97	-1	-1	2300
072	AGDTYL ER	03/10/87	9:00	12.5	6.8	6.4	1100	60	100	36.0		1300	80	2	8	1400
175	AGDTYL ER	04/16/87	7:15	17.0	7.2	6.8	310	72	35	7.5		1300	95	2	-1	1400
293	AGDTYL FR	06/24/87	7:00	22.5	6.8	5.6				6.4		1000	59	5	-1	1100
294	AGDTYLER	06/24/87	7:00	22.5	6.8	5.6					7.6	790	58	3	-1	850
017	AMERICAN	02/13/85	13.20	10.0	7.3	11.9	63	2	15			230	6	-1	-1	240
033	AMERICAN	03/13/85	12.15	12.0	7.3	3 11.	2 6	3	5							
057	AMERICAN	04/10/85	11.30	14.5	73	10.5	67	2	0			180	6	-1	-1	190
067	AMERICAN	05/08/85	11.00	14.0	7.3	10.7	62	1	5			240	3	-1	-1	240
007	AMERICAN	06/12/85	12.00	18 5	7.3	9.9	60	2	0			290	5	1	-1	300
110	AMEDICAN	08/14/85	11.15	20.0	7.2	9 1	56	1	2			210	8	-1	-1	220
144	AMEDICAN	10/09/85	11.30	16 5	7.2	9.2	52	1	õ			180	5	-1	-1	190
100	AMERICAN	12/03/85	20.30	12.5	7.2	10.5	64	6	5			260	6	-1	-1	270
021	AMERICAN	02/11/96	12.15	12.0	7 1	12.0	56	76	25			370	5	-1	-1	380
031	AMERICAN	04/17/96	11.20	14 5	7 3	11 2	55	6	15			300	5	-1	-1	310
047	AMERICAN	05/12/96	11.45	16.5	7.3	10.0	53	3	25			190	6	1	-1	200
112	AMERICAN	00/10/00	11:40	16.5	7.3	10.0	46	3	15			150	q	4	2	170
113	AMERICAN	05/11/80	11:30	10.0	7.5	10.0	40	2	5			210	4	-1	-1	210
132	AMERICAN	07/09/86	12.20	17.5	7.1	9.7	2 5	0 2	5	5		210		- 1		210
153	AMERICAN	08/13/86	13:30	20.5	7.0	2 9. 0 E	5 0	0 2	5	5		160	4	_1	-1	160
202	AMERICAN	09/11/86	11:30	22.0	1.3	8.0	52	4	5	1 0		240	4	-1	-1	240
271	AMERICAN	11/05/86	6:30	10.0	0.9	10.2	40	-	0	1.0		240	4	-1	-1	240
292	AMERICAN	12/03/86	6:45	12.5	1.3	9.2	51	1	0	1.2		200	0	-1	-1	240
004	AMERICAN	01/08/87	6:50	9.0	1.1	12.0	04	3	0	1.0		230	0	-1	-1	100
026	AMERICAN	02/05/87	6:30	10.0	6.9	11.2	70	2	0	1.1		190	4	-1	-1	190
064	AMERICAN	03/03/87	6:45	11.0	1.5	11.3	69	1	0	1.7		250	19	-1	-1	270
162	AMERICAN	04/09/87	5:30	16.0	7.2	9.2	69	2	5	1.2		240	9	-1	-1	200
201	AMERICAN	05/13/87	5:15	19.5	7.2	8.5	80	2	5	1.8		240	10	1	-1	250
237	AMERICAN	06/04/87	5:15	18.0	7.3	9.4	85	3	5	1.2		1/0	6	-1	-1	180
409	AMERICAN	09/24/87	5:45	17.0	6.8	8.3	78	2	5	1.6		370	12	4	1	390
452	AMERICAN	10/28/87	6:30	20.0	7.1	8.2	73	2	0	2.3		193	5	-1	-1	200
549	AMERICAN	11/24/87	6:30	10.5	8.0	9.5	66	1	0	1.6		140	4	-1	-1	140
608	AMERICAN	12/16/87	10:00	11.0	7.1	9.3	81	2		1.7		120	5	-1	-1	130
076	AMERICAN	01/21/88	11:00	9.8	7.2	12.5	87	10	25	2.1		320	5	-1	-1	330
134	AMER ICAN	02/23/88	10:30	12.9	7.2	10.8	85	1	5	1.7		110	5	-1	-1	120
225	AMERICAN	03/24/88	11:00	19.1	7.2	10.8	78	1	5	1.2		160	6	-1	-1	170
324	AMER ICAN	04/28/88	5:25	14.7	8.0	9.3	77	2	10	1.7		96	11	1	-1	110

Note: Negative values signify reporting limits. Concentration of analyte below reporting limit.

]

1

1

1

1

1

Ĭ

自己

1

1

1

]

and a second

1

U

3

]

-

1

1

1

]

APPENDIX B

Page	5							THM [DATA R	EPORT			-			
				-		-	50	TUDD	001.00	TOC	000	<	Brcl2 CH	Br2CL C	HBr3 1	THMEP
		OUD DITE	THE	TEMP	pH	DU ma /l	EC /om	TUKB	CULUR	ma/l	ma/l			un/l		>
LAB#	STA. NAME	SAMP.DATE	1 I ME			mg/L		1.0.								
8401	AMERICAN	05/26/88	5:50	16.5	8.2	8.8	75	5 2	5	2.0		180	6	1	-1	190
8433	AMERICAN	06/22/88	9:19	19.9	7.2	8.9	76	6 1	5	2.3		110	4	-1	-1	110
9471	AMERICAN	07/14/88	5:50	17.8	6.7	8.5			5	1.5		230	5	-1	-1	240
9500	AMERICAN	08/16/88	5:45	20.5	7.0	7.6	72	2 1	5	1.8		180	6	-1	-1	180
0702	AMERICAN	09/22/88	9.00	20.4	7.0	7.9	70	0 1	5	1.2		170	7	-1	-1	180
0721	AVEDICAN	10/20/88	5-30	19.5	6.6	8.4	74	4 1	5	1.3		110	64	-1	-1	170
9753	AMERICAN	11/10/88	6:15	16.2	6.5	9.1	68	3 2	5	1.6		210	11	-1	-1	220
9926	AMEDICAN	12/20/88	7.00	11.4	6.8	10.8	82	2 3	10	2.7		330	9	-1	-1	340
5010	BANKS	02/27/85	9.45	13.5	7.5	9.5	335	5 8	35			310	71	10	-1	390
5025	BANKS	03/27/85	9.00	12.5	7.	4 10.	1 3	67	11							
50/0	BANKS	04/24/85	9.15	17.5	7.6	8.7	351	1 11	5			410	81	17	-1	510
5070	BANKS	05/22/85	8.15	19.5	8.1	8.6	351	1 26	5			580	90	17	-1	690
5008	BANKS	06/07/85	8.50	23.5	7.	5 7.	4 3	22	30							
5096	BANKS	06/26/85	8.00	23.5	7.7	7.5	370	32	20			550	110	24	1	690
5101	BANKS	07/10/85	8.00	24.5	7.5	7.5	343	3 16	15			590	160	35	2	790
5120	BANKS	08/28/85	8:30	22.5	7.4	7.8	468	5 10	10			390	140	69	5	600
5120	BANKS	09/25/85	8:20	22.5	7.5	7.9	588	3 6	10			340	89	40	10	480
51/6	BANKS	10/23/85	8.00	17.0	7.6	8.9	527	7 7	5			290	150	90	13	540
5173	BANKS	11/15/85	9-30	12.0	7.4	9.5	586	5 6	10			260	160	100	-1	520
5167	BANKS	12/03/85	14.15	11.5	7.4	10.1	676	6 10	10			240	210	150	10	610
6009	BANKS	01/23/86	9.20	12.0	7.3	9.2	482	2 12	25			1700	170	47	2	1900
0000	BANKS	02/13/86	8.45	11.5	7.7	10.5	444	4 17	25			780	140	28	1	950
6024	BANKS	03/04/86	9-30	16.5	7.3	8.2	332	2 14	30			600	70	6	-1	680
6020	BANKS	04/09/86	9.15	17.5	7.5	9.4	265	5 13	20			630	76	10	-1	720
0039	DANKS	05/07/86	7-45	15.5	7.3	8.9	284	4 11	15			460	74	10	-1	540
00/4	DANKS	06/04/86	8.15	19.5	7.5	8.6	312	2 32	20			340	45	9	-1	390
0100	DANKS	07/02/86	8-05	24 0	7 3	6.4	305	5 25	15			470	78	17	-1	570
0123	BANKS	00/11/96	8.45	24.0	7.0	3 7	7 2	80	22 1	5						
0142	DANKS	00/24/96	8.30	19 5	7 5	8.6	297	7 22	10	π.		360	89	19	-1	470
0172	DANKS	11/12/96	0.30	14.0	7 4	9.7	236	13	15	1.9		340	35	9	-1	380
0211	DANKS	12/17/06	10.00	10.0	7 3	10.1	275	R G	15	1.6		350	58	7	-1	420
5308	BANKS	01/22/97	9-45	6.5	7 3	12.0	309	a 14	20	3.8		650	68	7	-1	730
7017	DANKS	01/22/07	0.45	11 5	7 3	10.7	44F	5 9	20	4.3		630	160	41	-1	830
7000	DANKS	02/24/07	0.20	13.0	7.5	9.7	560	8 8	25	5.0		470	120	18	8	620
7107	DANKS	03/24/07	9.40	18.5	8.4	10.0	396	6 10	15	3.2		240	57	8	-1	310
7010	DANKS	05/29/97	10.30	18.0	7 4	11 0	39	7 28	15	2.5		450	120	30	-1	600
7219	BANKS	05/20/07	0.00	21 5	7.5	8.1	001			2.0		450	120	33	-1	600
7229	BANKS	00/02/07	10.20	21.5	7	6 8	3 4	87	19 1	5			0.0000	222		
7281	BANKS	00/00/07	0.45	21.5	7 2	7 4	626	s 12	5	4 0		250	140	82	20	490
7399	BANKS	10/09/87	0:40	10.5	7 4	7.0	81/	4 5		3.9		130	120	100	29	380
/442	BANKS	11/05/07	0.00	17.5	7.4	0.7	703	3 6	5	27		250	100	50	21	420
/540	BANKS	10/00/07	9:00	11.0	7.4	10.9	02	5 5	15	2.7		190	130	110	25	460
/567	BANKS	12/08/8/	9:00	0.0	7.1	11.0	630	1 11	20	4.6		410	150	68	4	630
8011	BANKS	01/0//88	9:24	0.2	7.3	0.5	201	2 12	10	4.0		710	94	20	-1	820
8091	BANKS	02/10/88	8:55	12.7	7.0	9.0	50	2 5	25	22		300	100	57	9	470
8146	BANKS	03/03/88	9:00	15.7	7.0	10.5	09	1 5	20	2.4		180	100	64	13	360
8235	BANKS	04/05/88	7:50	15.4	1.5	9.3	00		20	3.4		100	100	01	10	000

Note: Negative values signify reporting limits. Concentration of analyte below reporting limit.

-

Page 6

THM	DATA	REPORT

												<	THMEO	mation P	otenti	al
				TEMP	рH	DO	EC	TURB	COLOR	TOC	DOC	CHC 13	CHBrC12	CHBr 2C1	CHBr3	TTHMFF
LAB#	STA. NAME	SAMP.DATE	TIME	OC		mg/L	uS/cm	T.U.	C.U.	mg/L	mg/L	<		ug/L -		>
8330	BANKS	05/03/88	8:35	16.6	7.9	8.9	372	9	30	2.8		440	90	35	5	570
8422	BANKS	06/14/88	8:27	23.0	7.5	6.7	457	30	60	2.4		310	87	34	1	430
3457	BANKS	07/12/88	8:30	21.5	7.8	8.0	575	33	60	2.6		420	150	72	5	650
3579	BANKS	08/09/88	10:15	22.0	7.4	7.9	675	16	20	2.4		380	150	120	21	670
3682	BANKS	09/06/88	8:20	24.2	7.8	6.7	721	11	25	2.7		210	130	83	32	460
3714	BANKS	10/04/88	8:35	20.1	7.4	8.0	689	8	20	2.9		230	150	70	12	460
744	BANKS	11/01/88	9:45	17.6	6.7	8.8	692	6	15	3.0		150	150	130	20	450
813	BANKS	12/13/88	10:02	11.3	7.1	10.7	739	7	25	4.1		310	210	150	19	690
054	BANKS	01/10/89	9:20	12.5	7.0	11.4	610	8	30	4.8		390	150	66	7	610
132	BANKS	02/07/89	9:00	5.9	6.8	12.1	748	6	30	4.1		160	110	71	21	360
213	BANKS	03/07/89	8:50	13.6	7.3	10.0	646	6	25	3.3		180	130	78	16	400
248	BANKS	04/04/89	8:24	16.2	8.2	7.9	286	11	40	4.4		510	68	14	-1	590
346	BANKS	05/02/89	8:30	18.4	7.8	8.0	237	8	25	3.2		330	44	6	-1	380
428	BANKS	06/06/89	8:20	20.5	8.1	7.9	300	27	50	3.7		440	70	13	-1	520
548	BANKS	07/05/89	10:18	23.0	7.7	8.2	291	18	40		3.1	330	60	13	0	400
587	BANKS	07/25/89	9:00	23.8	7.7	9.2	300	14				360	120	32	1	510
395	BARKER	09/03/87	8:00	20.5	7.3	5.5	734	65		6.7		1100	48	1	-1	1100
438	BARKER	10/08/87	10:40	19.8	7.4	7.6	561	36	25	4.2		750	32	1	-1	780
530	BARKER	11/03/87	8:50	15.0	7.3	7.1	568	18	10	6.1		1000	56	3	2	1100
561	BARKER	12/01/87	9:15				599	16	15	5.8		590	39	3	2	630
002	BARKER	01/06/88	12:10	9.3	7.3	10.4	387	84	80	9.3		1200	31	1	-1	1200
109	BARKER	02/18/88	12:15	10.3	7.5	10.1	540	52	50	6.8		1300	57	4	-1	1400
216	BARKER	03/17/88	9:00	13.7	7.6	10.2	639	22	60	6.7		1000	64	6	-1	1100
251	BARKER	04/14/88	8:57	16.3	7.4	8.4	539			7.8		1200	61	5	4	1300
396	BARKER	05/19/88	10:05	24.3	7.9	5.6	673	21	60	6.6		920	100	7	-1	1000
419	BARKER	06/07/88	7:52	18.1	7.7	6.8	590	31	60	5.1		820	79	13	1	910
452	BARKER	07/06/88	8:30	21.6	7.5	7.5	366	50	80	3.8		760	39	4	-1	800
574	BARKER	08/02/88	12:30	21.8	7.9	8.0	241	60	60	3.0		530	31	1	1	560
694	BARKERNOBAY	09/15/88	8:18	17.9	7.3	8.5	274	30	50	4.0		500	32	4	-1	540
723	BARKERNOBAY	10/13/88	9:05	16.9	7.5	7.6	323	23	50	4.4		470	27	3	-1	500
761	BARKERNOBAY	11/17/88	9:36	12.4	7.4	9.0	298	19	35	3.2		410	37	6	-1	450
807	BARKERNOBAY	12/06/88	10:15	9.9	7.1	10.8	283	18	30	3.2		360	34	2	-1	400
111	BOULD IN1	03/26/87	8:30	13.5	7.2	8.3	591	17	120	32.0		2100	120	16	-1	2200
299	BOULD IN1	08/06/87	11:40	23.6	7.3	7.2	262	12			7.9	1300	56	5	-1	1400
470	BOULD IN1	10/16/87	10:15	18.0	6.9	2.4	688	7	500	96.0		1800	210	25	-1	2000
572	BOULD IN1	12/10/87	8:15	11.5	6.7	3.6	430	8	200	42.0		1700	45	2	1	1700
017	BOULD IN1	01/12/88	7:50	10.1	6.4	4.5	937	9	350	66.0		2600	240	11	-1	2900
151	BOULD IN1	03/08/88	8:51	9.1	7.3		936	16	350	45.0		2700	300	20	-1	3000
336	BOULD IN1	05/09/88	8:37	18.6	7.1	8.5	201	14	100		8.8	1000	72	7	-1	1100
72	BOULD IN1	07/18/88	8:57	23.3	7.0	5.3	178	11	60		6.8	840	14	-1	-1	850
598	BOULD IN1	08/10/88	11:18	23.1	7.2	7.3			60		5.9	710	33	1	-1	740
521	BOULD IN1	08/17/88	9:16	21.5	7.2	3.5	338	5	160		19.0	2000	98	4	-1	2100
57	BOULD IN1	08/24/88	9:31	21.6	7.4	3.4	323	8	140		19.0	2000	110	2	-1	2100
73	BOULD IN1	08/31/88	9:13	21.5	7.0	3.0	LOCAL C		200		25.0	2000	120	3	-1	2100
86	BOULD IN1	11/30/88	11:15	9.3	7.0	5.3	471	4	240		47.0	2600	170	14	-1	2800
000	POLIL D IN1	12/07/88	11.04	10.9	7.8	7 1	410	11	280		12 0	2500	170	15	1	2700

Note: Negative values signify reporting limits. Concentration of analyte below reporting limit.

No. of Concession, Name i and the second No. Nurse of 1 I Toral and 1

1

1

1

3

1

-

Page 7

1

Contraction of the local division of the loc

1

Name of

ä

1

APPENDIX B

THM DATA REPORT

												<	- THMFor	mation P	otenti	al>
				TEMP	pH	DO	EC	TURB	COLOR	TOC	DOC	CHC13 C	HBrC12 (CHBr2CI	CHBr3	TTHMFP
AB#	STA. NAME	SAMP.DATE	TIME	0C		mg/L	uS/cm	T.U.	C.U.	mg/L	mg/L	<>		ug/L -		>
8829	BOULD IN1	12/20/88	9:00	8.1	7.2	6.5	574	10	240		51.0	3100	130	22	-4	3200
8856	BOULD IN1	12/28/88	9:25	5.0	7.3	7.8	584	12	240		56.0	2500	190	23	-1	2700
7112	BOULD IN2	03/26/87	9:00	13.5	7.0	6.2	504	13	350	55.0		2800	210	26	-1	3000
300	BOULD IN2	08/06/87	12:20	25.5	7.1	7.1	182	18			5.4	830	74	-1	-1	900
471	BOULD IN2	10/16/87	9:45	17.4	6.8	5.4	342	7	250	39.0		1700	75	1	-1	1800
573	BOULD IN2	12/10/87	8:55	12.5	6.9	5.3	533	6	400	60.0		2970	126	2	-1	3100
8018	BOULD IN2	01/12/88	8:25	5.8	6.0	5.5	698	13	200	39.0		2700	110	3	-1	2800
152	BOULD IN2	03/08/88	8:39	11.1	6.5		553	16	400	51.0		2700	110	-1	-1	2800
253	BOULD IN2	04/18/88	8:00	17.0	6.7	4.3	2 49	4 1	1 400	39.	0					
337	BOULD IN2	05/09/88	7:52	18.9	7.4	7.7	279	12	160		18.0	2200	67	-1	-1	2300
8473	BOULD IN2	07/18/88	8:26	23.9	6.5	3.3	202	18	120		10.0	1100	19	-1	-1	1100
599	BOULD IN2	08/10/88	10:44	21.2	7.1	5.5			140		14.0	1600	56	-1	-1	1700
622	BOULD IN2	08/17/88	9:44	22.7	6.8	5.0	440	7	320		39.0	1800	170	1	-1	2000
658	BOULD IN2	08/24/88	9:55	22.6	7.3	4.2	350	5	280		32.0	3200	150	2	-1	3400
8674	BOULD IN2	08/31/88	9:36	22.7	7.3	2.5			240		25.0	2000	91	2	-1	2100
787	BOULD IN2	11/30/88	11:52	9.9	7.2	3.2	467	8	280		27.0	2700	170	4	-1	2900
801	BOULD IN2	12/07/88	11:41	11.9	7.4	5.0	412	7	320		56.0	2600	170	19	-1	2800
830	BOULD IN2	12/20/88	8:30	8.6	6.7	3.8	597	7	240		56.0	2700	120	23	-4	2800
857	BOULD IN2	12/28/88	10:30	7.7	7.3	4.6	745	10	400		85.0	2800	67	25	-1	2900
614	BOULDS IPHO1	08/10/88	11:53	23.0	7.1	8.9	175	8	30		3.1	420	17	-1	-1	440
630	BOULDS IPH01	08/17/88	8:54	22.3	7.4	5.5	179	15	60		2.8	310	19	-1	-1	330
659	BOULDS IPHO1	08/24/88	9:08	22.8	7.9	7.8	194	6	15		2.2	260	21	2	-1	280
675	BOULDS IPHO1	08/31/88	8:50	22.7	7.0	7.0			40		2.9	290	21	1	-1	310
785	BOULDS IPHO1	11/30/88	10:27	9.8	7.0	3.6	293	13	160		25.0	2100	97	9	3	2200
799	BOULDS IPHO1	12/07/88	10:28	12.5	7.3	6.7	267	54	200		6.9	580	41	5	-1	630
328	BOULDS IPH01	12/20/88	8:00	10.5	6.4	6.3	263	104	160		3.5	320	30	2	-1	350
355	BOULDS IPH01	12/28/88	7:50	6.4	7.2	12.0	196	9	20		3.0	350	28	3	-1	380
087	BRANNANPP01	03/16/87	10:30									2300	180	16	-1	2500
301	BRANNANPP01	08/06/87	11:05	22.1	6.9	5.5	294	13			5.5	1200	60	8	-1	1300
472	BRANNANPP01	10/16/87	9:00	15.7	6.9	4.9	361	15	50	8.2		900	92	6	-1	1000
574	BRANNANPP01	12/10/87	9:30	11.5	6.7	6.1	595	13	120	26.0		1740	138	5	-1	1900
019	BRANNANPP01	01/12/88	10:00	7.5	6.5	8.1	854	17	200	34.0		2600	120	5	-1	2700
153	BRANNANPP01	03/08/88	8:11	10.2	6.8		538	28	160	23.0		1800	120	4	-1	1900
254	BRANNANPP01	04/18/88	7:50	15.0	6.7	4.2	356	5 20	300	22.0)					
338	BRANNANPP01	05/09/88	7:19	20.2	7.1	4.2	378	14	240		20.0	2200	120	-1	-1	2300
474	BRANNANPP01	07/18/88	7:37	21.1	6.9	4.6	292	13	100	7.3		890	95	3	-1	990
174	BRANNANPP01	07/18/88	7:37	21.1	6.9	4.6	292	13	100	7.3		890	95	3	-1	990
474	BRANNANPP01	07/18/88	7:37	21.1	6.9	4.6	292	13	100	7.3		890	95	3	-1	990
474	BRANNANPP01	07/18/88	7:37	21.1	6.9	4.6	292	13	100	7.3		890	95	3	-1	990
174	BRANNANPP01	07/18/88	7:37	21.1	6.9	4.6	292	13	100	7.3		890	95	3	-1	990
302	BRANNANPP02	08/06/87	9:45	22.6	6.9	3.0	505	25			11.0	1700	180	21	-1	1900
173	BRANNANPP02	10/16/87	8:00	15.9	6.7	0.6	597	35	35	13.0		310	48	9	-1	370
575	BRANNANPP02	12/10/87	9:45	13.0	6.4	1.7	649		80	11.0		453	134	27	-1	610
120	BRANNANPP02	01/12/88	8:50	8.3	6.8	7.4	974	16	200	37.0		2000	87	5	2	2100
154	BRANNANPPO2	03/08/88	7:24	12.8	6.7		643	90	60	15.0		790	220	26	-1	1000
220	RRANNANPPO2	04/18/88	6:37	15.5	6.7	0.1	602	22	300	26.0						

Note: Negative values signify reporting limits. Concentration of analyte below reporting limit.

1

Page 8

TUN	DATA	DEDODT
1 DM	UAIA	KEPUKI

												<	- THMFor	mation P	otentia	1
				TEMP	pH	DO	EC	TURB	COLOR	TOC	DOC	CHC13 C	HBrC12	HBr2CI	CHBr3	TTHMFF
LAB#	STA. NAME	SAMP.DATE	TIME	oC		mg/L	uS/cm	T.U.	C.U.	mg/L	mg/L	<		ug/L -		>
8339	BRANNANPP02	05/09/88	6:17	17.1	6.8		585	17	280		30.0	1600	200	15	-1	1800
7303	BRANNANPP03	08/06/87	10:15	22.0	7.3	7.2	671	32			8.2	1400	170	26	-1	160
7474	BRANNANPP03	10/16/87	8:20	15.8	6.5	1.2	1330	84	15	11.0		78	50	24	9	16
8021	BRANNANPP03	01/12/88	9:05	8.3	6.6	2.5	1000	32	200	26.0		1500	130	15	-1	160
8155	BRANNANPPO3	03/08/88	7:39	13.8	6.8		1380	150	40	14.0		260	130	49	-1	44
8256	BRANNANPP03	04/18/88	7:00	16.0	6.5	5 0.0	0 137	70 15	6 4	0 11.	0					
8340	BRANNANPP03	05/09/88	6:38	17.8	6.8		1250	230	100		13.0	730	190	52	8	98
8476	BRANNANPPO3	07/18/88	6:49	20.0	6.6	0.0	1010	31	600		16.0	1600	180	11	1	180
7304	BRANNANPP04	08/06/87	10:45	22.4	7.1	6.3	328	3 14			5.0	860	79	14	-1	95
7475	BRANNANPP04	10/16/87	8:40	16.4	6.9	3.3	599	38	60	13.0		1500	180	20	-1	170
7577	BRANNANPPO4	12/10/87	10:05	11.5	7.0	6.5	780	15	140	25.0		1800	160	14	-1	2000
8022	BRANNANPPO4	01/12/88	9-40	11.2	6.8	7 1	889	12	200	32.0		3000	140	7	-1	3100
8156	RRANNANPPO4	03/08/88	7-54	11 9	7.3	1.1	1000	17	140	30.0		2900	98	6	-1	3000
2257	RDANNANPPOA	04/18/88	7.24	15.5	6.7	6 6	1000	2 2	4 120	14	0	2000	50	0		0000
8341	BRANNANPPOA	05/00/88	6.57	17 4	7.5	8.0	403	18	100	/ 14.	9.1	1200	86	7	-1	1200
8477	BRANNANPPOA	07/19/99	7.15	20.7	6.6	3.0	570	15	140		17.0	1500	130	8	-1	1600
5002	CLIETON	01/20/85	0.25	7.0	7 1	10 5	3/3	10	8		17.0	1500	150	0	-1	1000
5021	CLIFTON	01/30/05	11.00	12.0	7 2	0.0	202	14	40			410	64	0	1	100
5027	CLIFTON	02/27/05	10.20	12.5	7.0	9.0	303	14	0			410	04	0	-1	400
051	CLIFTON	03/21/05	10:30	12.5	7.6	0.6	2 277	0	0			470	EC.	7	1	500
072	CLIFTON	04/24/00	0.20	21 5	0 1	9.0	211	21	15			4/0	00	11	-1	030
2100	CLIFTON	00/22/00	9:30	21.5	7.5	3.2	204	17	15			550	00	24	-1	090
100	OL IFTON	07/20/80	9:15	24.5	1.5	1.1	314	11	15			000	88	24	1	ppr
103	CLIFIUN	07/10/85	9:00	20.0	7.5	0.0	38	1 0	5 10			100	110	17		000
IZZ	CLIFION	08/28/85	10:00	23.5	1.4	1.1	458	10	10			460	110	4/	3	620
133	CLIFION	09/25/85	9:40	22.5	1.4	6.6	60	2 1	2							
148	CLIFION	10/23/85	9:15	17.5	1.5	8.9	484	9	10			330	130	59	4	520
175	CLIFION	11/15/85	10:45	12.0	7.4	10.2	67	9 1	2			17122	1000	(112) A	622	//25/151
169	CLIFTON	12/03/85	13:05	12.0	7.4	10.1	744	10	8			310	220	170	13	710
010	CLIFTON	01/23/86	10:45	11.5	7.3	9.0	41	0	8							
015	CLIFTON	02/13/86	9:50	11.5	7.3	10.4	42	3 1	7							
026	CLIFTON	03/04/86	10:45	16.5	7.3	7.8	306	21	20			520	64	7	-1	590
041	CLIFTON	04/09/86	11:00	16.5	7.2	8.8	197	14	20			570	62	5	-1	640
076	CLIFTON	05/07/86	8:50	15.5	7.3	8.8	280	13	20			350	51	7	-1	410
107	CLIFTON	06/04/86	9:45	20.5	7.3	8.2	303	26				140	28	6	-1	170
125	CLIFTON	07/02/86	9:20	24.5	7.3	6.5	534	11	10			310	91	36	2	440
144	CLIFTON	08/14/86	10:45	24.5	7.4	7.4	57	1 15	5 5							
174	CLIFTON	09/24/86	9:45	19.5	7.3	8.3	292	19	15			350	86	18	-1	450
279	CLIFTON	11/12/86	10:30	14.0	7.3	9.7	276	13	10	2.2		350	43	14	-1	410
310	CLIFTON	12/17/86	8:40	10.0	7.3	10.0	285	11	5	2.1		430	60	7	-1	500
019	CLIFTON	01/22/87	8:30	6.5	7.3	11.5	300	19	15	4.1		730	26	2	-1	760
053	CLIFTON	02/24/87	8:45	11.5	7.3	10.1	435	11	20	4.7		780	96	34	-1	910
109	CLIFTON	03/24/87	8:30	13.5	7.3	9.6	730	10	10	4.2		400	140	27	-1	570
186	CLIFTON	04/30/87	7:30	20.0	8.3	11.1	365	12	10	3.2		270	49	7	-1	330
221	CLIFTON	05/28/87	8:45	19.5	7.4	9.0	401	20	10	2.4		420	140	36	-1	600
283	CLIFTON	06/23/87	8:45	23.0	8.3	7.4	483	3 22	15					00		000
	01 15701	00/00/07	0.45	00.4					-						112.25	-

Note: Negative values signify reporting limits. Concentration of analyte below reporting limit.

I

Do	-	0
r d	UE.	- 31

THM	DATA	REPORT
IUW.	DATA	neruni

				TEMP	pН	DO	EC	TURB	COLOR	TOC	DOC	CHC13 C	HBrC12 C	HBr2CI	CHBr3	TTH
LAB#	STA. NAME	SAMP.DATE	TIME	oC		mg/L	uS/cm	T.U.	C.U.	mg/L	mg/L	<		ug/L		
	01.15701	10/00/07	o. 45	10.5		7.0						010	140	100		
7444	CLIFIUN	10/22/87	8:45	19.5	7.4	1.3	111	D	U	3.1		210	140	120	10	
/542	CLIFION	11/05/8/	10:30	17.5	1.4	8.3	616	0	C	2.9		240	130	/6	12	
/569	CLIFION	12/08/87	10:00	11.3	7.4	10.2	847	10	20	3.3		260	150	93	22	
8013	CLIFION	01/0//88	10:36	1.3	1.3	12.0	588	13	25	4.6		460	170	60	4	
8093	CLIFION	02/10/88	9:25	11.2	7.1	9.8	364	12	40	4.6		720	65	18	-1	
8148	CLIFION	03/15/88	10:20	13.6	1.5	10.7	5/4	6	20	2.9		320	110	79	8	
8237	CLIFION	04/05/88	8:30	16.4	1.5	9.4	6/2	6	20	3.9		280	95	51	8	
8332	CLIFION	05/03/88	9:25	17.7	1.1	8.8	337	15	35	2.8		490	/9	22	4	
8424	CLIFION	06/14/88	9:39	22.9	1.5	6.9	416	25	60	2.6		390	100	27	-1	
8459	CLIFTON	07/12/88	9:23	23.0	7.5		560	19	30	2.6		390	120	/6	6	
8581	CLIFTON	08/09/88	11:30	23.8	7.6	1.4	616	12	20	2.4		230	120	89	15	
8684	CLIFTON	09/06/88	9:15	24.6	7.6	1.2	/13	10	20	2.5		240	150	62	14	
8716	CLIFTON	10/04/88	9:36	20.8	7.8	7.9	617	1	20	4.3		230	110	51	6	
8746	CLIFION	11/01/88	10:34	17.5	1.6	8.3	844	11	20	3.0		150	130	110	5	
8815	CLIFION	12/13/88	10:45	11.5	1.1	10.6	/26	12	30	4.4		540	230	150	15	
5002	DMC	01/30/85	8:50	7.5	1.3	3 10.8	6 39	8	-			110	75			
5020	DMC	02/2//85	10:15	13.0	1.5	9.9	336	11	35			410	/5	12	-1	
5036	DMC	03/2//85	9:45	12.0	1.4	9.0	8 31	5	5			0.10		-		
5050	UMC	04/24/85	10:00	17.5	1.5	9.5	280	9	5			340	5/	5	-1	
5071	DMC	05/22/85	9:00	20.5	8.3	9.1	265	22	20			550	/1	10	-1	
5087	DMC	06/26/85	8:30	24.5	1.6	1.1	/10	23	10			580	180	9	10	
5102	DMC	07/10/85	8:30	24.5	7.4	0.1	/ 54	4 2	÷			410	100	70	0	
5121	DMC	08/28/85	9:20	23.0	1.4	1.1	441	17	20			410	120	70	3	
514/	UMC	10/23/85	8:40	10.5	1.4	1.2	592	13	D			270	110	58	5	
51/4	DMC	11/15/85	10:15	12.0	7.4	10.3	54	1 0	15			200	100	100	0	
5168	DMC	12/03/85	13:05	12.0	1.4	10.1	591	10	15			360	190	120	б	
6009	DMC	01/23/86	10:00	11.5	1.3	8.8	43		5							
6014	DMC	02/13/86	9:15	11.5	7.5	10.2	460		05			500	01	0		
6025	DMC	03/04/86	10:15	16.5	7.3	7.9	288	25	25			580	61	5	-1	
6040	DMC	04/09/86	9:45	16.0	1.3	9.0	229	22	25			600	58	/	-1	
6075	DMC	05/07/86	8:15	16.0	1.2	8.3	278	15	10			260	40	5	-1	
6106	DMC	06/04/86	9:00	21.5	1.3	1.1	362	31	10			250	54	8	-1	
6124	UMC	07/02/86	8:45	24.5	1.3	7.0	530	13	10			340	120	34	2	
6143	DMC	08/14/80	9:30	24.5	7.3	0.0	000	10	10			240	01	00		
61/3	DMC	09/24/86	9:10	18.5	1.3	8.1	320	18	10	1.0		340	81	20	-1	
62/8	UMC	11/12/86	10:00	13.5	7.4	9.4	545	13	5	1.9		230	64	53	2	
6309	DMC	12/1//86	9:15	10.0	1.2	9.6	299	11	5	2.1		400	66	9	-1	
7018	DMC	01/22/8/	9:00	6.5	1.3	11.5	356	18	20	4.1		670	19	9	-1	
/054	DMC	02/24/8/	9:15	10.5	1.3	9.7	860	11	10	3.6		480	190	120	1	
7108	DMC	03/24/8/	8:45	13.0	1.5	9.6	804	13	15	3.9		340	140	33	6	8
/185	DMC	04/30/8/	8:00	20.0	8.3	10.3	359	18	10	3.1		280	51	8	-1	- 0
7220	UMC	05/28/8/	8:30	18.5	1.5	8.6	405	1/	10	2.5		420	130	34	-1	0.26
/282	DMC	06/23/87	8:15	23.0	7.5	7.5	466	22	10	0.5					20	
7400	DMC	09/09/87	9:20	22.0	1.4	1.7	503	21	5	3.5		410	110	43	8	
7443	DMC	10/22/87	8:30	19.0	7.4	7.2	751	7	0	3.3		87	68	34	33	1
7541	DMC	11/05/87	10:00	18.0	7.3	8.5	620	8	5	2.6		280	110	77	14	3

Note: Negative values signify reporting limits. Concentration of analyte below reporting limit.

Ph	1000	10
Pa	00	1111
- F - G		10

THM DATA REPORT

												<	- IHMFOR	mation Po	tenti	al>
				TEMP	pН	DO	EC	TURB	COLOR	TOC	DOC	CHC13 CH	BrC12 (HBr2CI	CHBr3	TTHMEP
LAB#	STA. NAME	SAMP.DATE	TIME	oC		mg/L	uS/cm 1	ſ.U.	C.U.	mg/L	mg/L	<		ug/L		>
7568	DMC	12/08/87	9:45	11.3	7.3	10.2	847	8	20	3.2		240	160	120	33	550
8012	DMC	01/07/88	10:05	7.6	7.1	12.0	488	13	35	5.0		490	100	30	-1	620
3092	DMC	02/10/88	8:55	11.1	7.2	9.5	376	14	40	4.8		730	36	15	-1	780
3147	DMC	03/03/88	9:45	13.3	7.4	10.5	575	8	20	3.0		370	96	39	3	510
3236	DMC	04/05/88	8:10	15.0	7.5	9.6	635	8	15	2.8		230	110	70	12	420
3331	DMC	05/03/88	8:57	17.4	7.7	9.0	344	16	30	2.7		410	89	25	4	530
3423	DMC	06/14/88	8:56	22.3	7.5	6.8	441	28	40	2.4		330	90	28	-1	450
3458	DMC	07/12/88	8:55	23.0	7.6	7.8	571	15	30	2.5		190	130	120	25	470
3580	DMC	08/09/88	10:50	23.2	7.7	7.9	710	25	25	2.7		210	110	82	11	410
8683	DMC	09/06/88	8:45	24.7	7.7	6.9	814	28	25	2.1		300	160	81	18	560
3715	DMC	10/04/88	8:59	19.7	7.4	7.6	783	13	25	3.4		290	150	71	7	520
3745	DMC	11/01/88	10:11	17.0	7.4	8.2	883	18	20	3.1		180	34	20	15	250
8814	DMC	12/13/88	10:22	11.4	7.1	10.6	675	11	30	4.4		400	190	130	12	730
9055	DMC	01/10/89	9:55	13.0	6.7	11.2	563	8	35	5.0		440	110	41	4	600
9133	DMC	02/07/89	9:30	6.4	6.9	11.9	662	7	25	4.3		200	120	74	8	400
214	DMC	03/07/89	9:10	13.2	7.3	9.9	567	8	25	3.7		280	130	68	5	480
249	DMC	04/04/89	8:46	16.2	8.0	7.8	313	12		4.6		580	62	14	-1	660
347	DMC	05/02/89	8:55	18.9	7.5	8.5	265	12	30	3.3		400	46	8	-1	450
429	DMC	06/06/89	9:10	21.8	8.0	7.9	270	20	40	3.4		470	55	9	-1	530
549	DMC	07/05/89	10:42	23.4	7.8	7.7	276	20	40		3.3	330	58	10	0	400
586	DMC	07/25/89	8:30	24.8	7.3	8.1	540	23				350	160	67	4	580
113	EG8ERTPP01	03/30/87	8:45	13.5	7.3	5.9	1100	105	100	33.0		2200	250	11	-1	2500
306	EGBERTPP01	08/13/87	10:05	19.3	7.0	6.5	305	120			7.1	1300	23	-1	-1	1300
476	EGBERTPP01	10/20/87	10:00	15.0	7.4	6.6	667	172	40	14.0		1600	89	-1	-1	1700
024	EGBERTPP01	01/12/88	9:10	6.3	7.1	9.3	968	56	100	32.0		2000	120	2	-1	2100
159	EGBERTPP01	03/08/88	8:38	6.1	7.3		1080	46	120	25.0		2300	110	5	-1	2400
260	EGBERTPP01	04/18/88	8:30	14.0	7.1	6.5	337	6	5 50	9.0)					
344	EGBERTPP01	05/09/88	8:30	15.5	7.4	3.2	903	52	160		32.0	3200	200	28	-1	3400
480	EGBERTPP01	07/18/88	8:34	21.5	7.0	6.6	297	60	100		8.2	910	16	-1	-1	920
114	EGBERTPP02	03/30/87	9:15	14.0	7.8	11.7	1760	60	80	37.0		2800	200	19	-1	3000
477	EGBERTPP02	10/20/87	10:20	16.0	7.6	5.7	1220	183	100	66.0		3500	77	2	-1	3600
025	EGBERTPP02	01/12/88	9:50	7.0	7.2	9.0	1350	64	60	10.0		1200	58	2	-1	1300
160	EGBERTPP02	03/08/88	9:04	8.5	8.1		1820	26	160	52.0		3600	170	5	-1	3800
261	EGBERTPP02	04/18/88	9:07	16.0	8.1	9.5	875	93	3 140	30.0)					
345	EGBERTPP02	05/09/88	8:55	17.1	8.2	4.5	1140	25	280		54.0	5000	30	-1	-1	5000
481	EGBERTPP02	07/18/88	9:01	22.9	7.0	3.7	484	62	120	13.0		1400	20	-1	-1	1400
005	GREENES	01/30/85	11:45	9.0	7.4	11.9	186	3	3							
013	GREENES	02/06/85	11:30	8.0	7.5	12.1	174	8	10			360	14	1	-1	380
029	GREENES	03/06/85	12:00	11.0	7.4	10.5	180	5	5							
047	GREENES	04/05/85	10:35	19.0	7.4	9.3	176	7	2			160	13	-1	-1	170
063	GREENES	05/01/85	10:30	19.0	7.3	8.8	167	11	10			210	12	1	-1	220
091	GREENES	05/29/85	5:10	18.0	7.4	9.5	178	10	1				1.1.5	0.50	07	
079	GREENES	06/05/85	9:55	21.0	7.4	8.5	173	9	10			290	19	1	-1	310
109	GREENES	07/24/85	8:00	22.5	7.3	8.0	163	8				1.000				3.3
114	GREENES	08/01/85	10:35	22.5	7.5	7.9	163	10	10			480	14	2	-1	500
	CDEENES	00/04/95	0.20	22.0	7 2	7.9	207	0	5			220	22	2	1	240

Note: Negative values signify reporting limits. Concentration of analyte below reporting limit.

1

1

J

1

3

					1.00
 n 	-	-	-		
~	- 14	п	0		
	a	u	0		

Contra la

1

APPENDIX B

THM	DATA	REPORT
11.98	DUUU	nLI UNI

												<	- THMFor	mation P	otenti	al>
				TEMP	pН	DO	EC	TURB	COLOR	TOC	DOC	CHC13 CH	BrC12 (CHBr2CI	CHBr3	TTHMFP
LAB#	STA. NAME	SAMP.DATE	TIME	0C		mg/L	uS/cm T	.U.	C.U.	mg/L	mg/L	<		ug/L -		>
5140	GREENES	10/02/85	10:15	21.5	7.5	8.2	168	7	5			200	14	1	-1	220
5165	GREENES	11/13/85	10:40	12.0	7.3	9.7	163	6	5			290	20	1	-1	310
5184	GREENES	12/03/85	19:30	11.5	7.3	9.3	149	28	35			690	21	1	-1	710
6006	GREENES	01/16/86	14:00	10.0	7.3	10.6	218	9	15			660	22	1	-1	680
6021	GREENES	02/27/86	12:40	12.5	7.1	10.5	84	64	20			340	7	-1	-1	350
6037	GREENES	03/13/86	13:45	11.5	7.3	11.0	70	58	10			430	8	-1	-1	440
6052	GREENES	04/23/86	12:45	18.5	7.3	8.5	179	14	10			310	22	1	-1	330
6087	GREENES	05/28/86	12:00	23.5	7.3	7.5	188	14	10			170	12	2	1	190
6119	GREENES	06/25/86	12:50	24.5	7.3	7.8	161	13	15			990	10	3	2	1000
6139	GREENES	07/23/86	12:15	22.5	7.3	7.8	128	3 1	3 5	ò						10000
6161	GREENES	08/27/86	12:45	24.5	7.6	7.3	179	10	10			220	17	1	-1	240
6208	GREENES	09/09/86	11:55	22.5	7.3	7.7	182	12	5			220	17	1	-1	240
6285	GREENES	11/19/86	7:00	14.5	7.3	10.0	146	7	10	1.5		180	7	-1	-1	190
6306	GREENES	12/10/86	7:10	11.0	7.3	10.7	152	8	0	1.5		210	13	-1	-1	220
7012	GREENES	01/13/87	7:15	7.5	7.3	11.0	178	8	5	1.7		200	12	-1	-1	210
7040	GREENES	02/10/87	6:45	12.0	7.3	9.4	193	15	10	2.3		470	19	-1	-1	490
7075	GREENES	03/10/87	6:45	13.5	7.1	8.4	128	72	25	3.4		1100	10	-1	-1	1100
7177	GREENES	04/16/87	5:45	16.5	7.2	5.6	178	8	5	1.4		260	18	2	-1	280
7212	GREENES	05/20/87	5:45	20.0	7.4	7.7	172	11	10	1.5		120	11	-1	-1	130
7250	GREENES	06/11/87	5:50	21.0	7.3	7.6	176	6	5	1.4		180	11	-1	-1	190
7374	GREENES	08/25/87	0.00	2110		1.0						250	13	13	-1	280
7393	GREENES	09/03/87	10:15	23.7	7.1	9.0	204	11	5	4.9		430	17	-1	-1	450
434	GREENES	10/08/87	5.35	20.0	72	8.7	159	7	5	1.6		240	11	-1	-1	250
/529	GREENES	11/03/87	6.40	16.5	7 1	8.1	180	4	n	2.8		300	15	-1	-1	320
559	GREENES	12/01/87	6.45	11.5	7.2	10.4	210	7	0	3.2		280	15	-1	-1	300
2001	GREENES	01/06/88	7.45	8.6	73	10.5	172	44	35	3.3		380	11	-1	-1	390
2108	GREENES	02/18/88	6.30	10.5	7.4	10.5	224	7	10	2.0		250	15	1	-1	270
3213	GREENES	03/17/88	6.50	13.4	7.2	10.3	219	7	10	1 9		250	14	1	-1	270
3249	GREENES	04/14/88	6.23	14.6	7.2	9.4	146		10	1.9		96	9	-1	-1	110
2394	GREENES	05/19/88	5.50	18 1	77	7 9	196	6	10	2.0		210	16	-1	-1	230
2416	CREENES	06/07/88	5.30	18 0	7 1	8 5	211	8	15	1 9		250	22	4	-1	290
8448	GREENES	07/06/88	6.08	20.8	73	7.5	142	10	10	2.0		200	7	1	-1	210
8570	GREENES	08/02/88	7.00	21.5	7.2	73	142	10	10	1.9		170	10	-1	-1	180
2690	CREENES	00/02/00	6-25	20.0	73	7.6	226	Q	15	2.5		300	23	3	_1	330
8719	GREENES	10/13/88	6.00	18 2	73	7 1	154	5	10	1.6		130	9	-1	-1	140
2757	CREENES	11/17/88	7.29	12.2	83	9 1	203	6	10	2.2		210	16	1	-1	230
1903	GREENES	12/06/88	7.00	10.6	7.0	10.5	198	8	10	2.8		240	24	1	_1	260
7115	KINGISPP01	03/26/87	11.30	12.5	6.0	1.0	757	26	40	16.0		620	120	21	-1	770
200	KING ISPP01	08/07/87	6-15	10.8	7 1	3.2	555	4	40	10.0	15.0	2100	270	26	1	2400
190	KING ISPP01	10/10/97	7.40	15.0	7.1	1.2	546	0	15	0.2	13.0	670	120	20	-1	2400
570	KINGISPP01	12/10/97	10.49	14.0	7.3	7.2	610	on	80	14.0		1020	144	14	-1	1200
027	KING (SDD01	01/12/00	9.20	10.7	7.2	5.1	672	12	25	9 5		840	170	24	-1	1000
162	KING ISPD01	01/12/00	10.10	12.2	7 1	0.1	420	17	40	0.0		910	04	54	-1	000
262	KINGISPDOT	03/00/00	7.22	60.0	14 6	7 1	300	1/ 7	01	0.0		010	04	5	-1	900
240	KING ICPD01	05/00/00	7.50	18 9	7.5	1.1	402	0	80	5.0	0.0	1100	50	10	1	1200
1940	KING ICDDO1	07/19/00	7.00	20 5	7.4	3 1	400	7	100		9.0	020	53	19	-1	000
404	KINGISPFUI	01/10/00	1:09	20.5	1.4	5.1	439	1	100		0.9	930	52	9	-1	990

Note: Negative values signify reporting limits. Concentration of analyte below reporting limit.

Page	12			÷				THM	DATA	REPORT						
				7251757	245							<	THMFor	mation F	Potenti	al>
			9233342M	TEMP	pH	DO	EC	TURB	COLOR	TOC	DOC	CHC13	CHBrC12 (CHBr2CI	CHBr3	TTHMFP
LAB#	STA. NAME	SAMP.DATE	TIME	oC		mg/L	uS/cm	T.U.	C.U.	mg/L	mg/L	<		ug/L -		>
1.00000																
7116	KING ISPP02	03/26/87	11:45	14.5	7.3	5.8	1510	7	35	11.0		480	230	160	36	910
7310	KINGISPP02	08/07/87	7.20	20.4	6.7	2.1	503	3 20			4.7	2000	130	23	-1	2200
7491	KINGISPP02	10/19/87	8.00	15.0	6.9	2.0	500	1 7	35	89		740	55	6	-1	800
7580	KINGISPP02	12/10/87	11.48	14.0	7.0	4.6	652	, q	160	26.0		1580	123	15	-1	1700
8028	KINGISPP02	01/12/88	10.00	8.7	7.0	6.2	508	2	50	9.8		1400	100	8	-1	1500
0020	KINGISPD02	01/12/00	10.00	12.9	7.2	0.2	572	45	100	13.0		1300	82	q	-1	1400
9764	KINGISPP02	04/18/88	8.18	14 0	7 1	3 6	5 50	16 1	0 80	1 12	n	1000	02	5		1400
02/04	KINGISPD02	05/00/88	8.20	20.6	7 9	5.8	106	16	100		11 0	1300	140	31	12	1500
0.49	KINGISPP02	07/19/99	7.57	22.0	7.1	2.3	652	6 6	140		21.0	1000	140	6	_1	2000
7117	KINGISPP02	07/10/00	12.15	17 5	7 1	2.5	443	. 0 A	50	11 0	21.0	780	100	a a	-1	2000
7011	KINGISPPUS	00/20/07	7.00	20.1	7.1	2.1	045	12	50	11.0	14.0	2000	450	160	-1	2600
7311	KINGISPPU3	10/10/97	7:00	10.1	7.1	2.0	940	12	20	0 2	14.0	1100	200	52	-1	1400
7482	KINGISPPU3	10/19/8/	1:20	10.0	7.1	3.9	005	000	200	0.3		1940	107	10	-1	2000
/581	KINGISPPU3	12/10/8/	0.40	13.0	7.2	1.9	1140	12	200	23.0		1040	127	70	-1	2000
8029	KINGISPPU3	02/02/00	9:40	9.2	7.5	0.0	040	20	60	9.0		640	200	79	12	000
8164	KINGISPP03	04/10/00	7.51	15.1	1.3	E 0	040	32	5 00	0.1	0	040	200	90	0	990
8265	KING ISPPUS	04/18/88	7:51	01.0	7.0	0.2	90	ו U,	00) /.	9 12 0	1000	FCO	210	10	1200
8350	KINGISPPU3	07/10/00	8:13	21.0	7.9	0.0	900	14	140	14.0	12.0	1000	200	210	18	1000
8486	KINGISPPU3	07/18/88	7:30	23.0	7.4	4.8	890	14	140	14.0		1200	320	90	2	710
5010	LCUNNECT	02/06/85	8:45	11.0	7.4	11.2	202	. D	15			000	40	D	-1	/10
5026	LCUNNECT	03/06/85	9:15	11.0	1.4	10.0	0100	8 10	/ 75			1000	000	070	01	0100
5044	LCUNNECT	04/05/85	8:15	21.5	1.3	3.9	2180	10	/5			1800	920	370	31	3100
5060	LCUNNEUT	05/01/85	8:00	19.0	7.4	9.1	1/5	5	о Г			280	21	2	-1	310
50/6	LCUNNECT	06/05/85	7:45	20.5	7.5	8.7	180	1	5			300	26	2	-1	330
5111	LCONNECT	08/01/85	8:00	22.5	1.4	8.0	186	5	10			360	32	2	-1	390
5137	LCUNNECT	10/02/85	6:40	20.0	7.5	7.8	209	4	5			240	26	3	-1	270
5161	LCONNECT	11/13/85	7:30	7.0	7.3	9.0	1880	4	80			340	34	2	-1	380
5180	LCONNECT	12/03/85	16:45	11.5	7.3	10.2	204	5	15			380	36	3	-1	420
6030	LCONNECT	03/11/86	11:45	14.5	7.3	9.0	192	22	25			650	51	3	-1	700
6045	LCONNECT	04/1//86	9:45	15.5	1.2	8.5	195	11	20			440	51	1	-1	500
6080	LCONNECT	05/13/86	9:45	19.5	7.3	8.4	162	14	25			150	16	2	-1	1/0
6111	LCONNECT	06/11/86	7:45	21.5	7.3	7.9	136	12	25			310	15	2	-1	330
6130	LCONNECT	07/09/86	7:15	23.0	7.3	7.7	154	9	10			280	30	1	-1	310
6150	LCONNECT	08/13/86	7:35	20.5	7.1	5.1	28	1	9 50				22	8		2012
6197	LCONNECT	09/11/86	7:30	21.5	7.4	7.6	181	12	10	8.8		280	24	3	-1	310
6282	LCONNECT	11/19/86	10:00	13.5	7.2	9.1	156	5	20	3.1		600	19	1	-1	620
6299	LCONNECT	12/10/86	11:00	11.0	7.3	10.0	16	8	5 10	2.8	3					
7007	LCONNECT	01/13/87	10:30	7.5	7.1	10.1	209	6	30		4.8	700	49	2	-1	750
7045	LCONNECT	02/10/87	10:30	11.5	7.2	9.6	235	10	15	4.8		630	41	-1	-1	670
7068	LCONNECT	03/10/87	10:30	13.5	7.1	9.1	261	14	35	4.7		1400	38	2	-1	1400
7170	LCONNECT	04/16/87	9:15	19.5	7.2	6.8	228	6	5	2.3		290	35	5	-1	330
7205	LCONNECT	05/20/87	8:30	21.5	7.4	8.5	194	9	5	1.7		280	28	3	-1	310
7243	LCONNECT	06/11/87	9:15	22.5	7.8	8.0	241	6	10	2.1		250	32	5	-1	290
7405	LCONNECT	09/24/87	8:30	20.5	7.4	7.9	270	6	10	2.3		240	25	3	-1	270
7448	LCONNECT	10/28/87	8:50	20.0	7.2	7.4	244	5	5	2.8		192	53	17	1	260
7546	LCONNECT	11/24/87	10:50	14.0	7.2	8.2	215	3	5	3.4		340	30	1	-1	370
7605	LCONNECT	12/16/87	8:30	8.2	7.3	11.3	178	18	40	4.4		800	19	1	-1	820
ownedd fe	NEWSPICE AND ROLL	NUL-0114-2010201	(SA)3(257)	25.01.242	0.0002641	CONTRACT.	29330	1(55)	263	36153953		53767	MD-	17	14	20122033

Note: Negative values signify reporting limits. Concentration of analyte below reporting limit.

3]

-

1

1

1-00

J

]

3

are service.	
Page	13

THM	DATA	REPORT

													<	- THMForr	nation Po	otenti	al>
					TEMP	pH	DO	EC	TURB	COLOR	TOC	DOC	CHC13 CI	BrC12 C	HBr2C1	CHBr3	TTHMFP
LAB#	STA. N	AME	SAMP.DATE	TIME	0C		mg/L	uS/cm	T.U.	C.U.	mg/L	mg/L	<>		ug/L		>
8073		т	01/21/88	8.42	8.8	7 2	10 4	262	14	40	4 7		670	63	4	_1	740
8131	L CONNECT	r	02/23/88	8:20	11.5	7.3	10.1	240	6	10	2.4		930	23	1	-1	950
3222	L CONNECT	r	03/24/88	8.45	15.3	7.4	9.6	225	3	10	1.9		220	22	3	-1	250
8321	LCONNECT	r	04/28/88	9.05	16.6	7 7	8.8	174	6	25	2.8		370	18	-1	-1	390
8398	LCONNECT	r	05/26/88	7.50	20.5	8.0	9.6	226	q	25	2.3		260	37	3	-1	300
8430	LCONNECT	r	06/22/88	6.08	21.9	7 4	7 4	261	7	35	5.0		630	46	4	-1	680
8465	L CONNECT	ri Fi	07/14/88	9.15	27.4	7.3	7.2	201		20	3.0		450	20	1	-1	470
8587	L CONNECT		08/16/88	8:30	22.0	7.5	7.4	184	6	15	2.1		240	24	24	-1	290
8699	LCONNECT	2	09/22/88	6:09	18.7	7.6	8.0	275	4	15	2.3		300	33	16	6	360
8728	LCONNECT		10/20/88	8:10	19.4	7.1	7.7	386	3	20	4.0		400	57	35	1	490
3750	LCONNECT	e.	11/10/88	8:15	16.1	6.8	8.4	206	4	15	4.0		310	28	3	-1	340
8839	LCONNECT	7	12/20/88	9:30	11.2	7.3	10.1	245	5	40	7.5		830	42	2	-1	870
9097	LCONNECT		01/31/89	8:45	9.9	7.0	10.6	255	4	20	3.1		200	32	5	-1	240
9187	LCONNECT		02/28/89	8:20	13.0	6.8	9.8	228	4	15	2.6		190	33	7	-1	230
9240	LCONNECT		03/28/89	8:40	14.8	7.4	8.1	148	10	30	4.3		520	28	3	-1	550
9337	LCONNECT		04/25/89	8:02	16.8	8.1	8.5	163	5	15	2.1		220	21	2	-1	240
9367	LCONNECT		05/23/89	8:07	18.7	8.1	8.7	165	6	20	2.8		310	21	1	-1	330
3487	LCONNECT		06/21/89	7:50	21.5	7.5	8.1	204	7	20		3.5	390	45	3	0	440
9561	LCONNECT	i	07/18/89	8:15	23.9	7.1	7.4	176	7	35		6.0	580	27	3	0	610
9599	LCONNECT		07/25/89	9:16	25.1	7.4	7.9	130	6				360	24	1	0	390
5016	LINDSEY		02/13/85	11:50	10.5	7.3	6.7	381	110	50			1200	65	3	-1	1300
5032	LINDSEY		03/13/85	11:45	12.5	7.6	9.1	48	2 6	0							
056	LINDSEY		04/10/85	10:15	18.0	7.7	8.6	531	20	15			580	86	9	-1	680
660	LINDSEY		05/08/85	10:00	17.0	8.1	8.8	574	18	20			660	88	4	-1	750
095	LINDSEY		05/29/85	10:30	20.0	7.9	8.6	57	2	7							
6083	LINDSEY		06/12/85	10:45	25.0	7.9	7.1	541	28	30			900	97	6	-1	1000
5106	LINDSEY		07/24/85	6:10	22.0	7.6	7.0	42	30	6							
5117	LINDSEY		08/14/85	9:55	21.0	7.8	8.6	405	48	30			750	69	5	-1	820
125	LINDSEY		09/11/85	9:00	19.5	7.7	7.5	443	30	25			820	54	4	-1	880
143	LINDSEY		10/09/85	10:05	16.5	7.6	8.1	496	31	38			1500	66	3	-1	1600
178	LINDSEY		11/19/85	8:20	8.5	7.5	10.0	442	18	3 15							
187	LINDSEY		12/03/85	7:20	11.5	7.4	8.7	569	25	60			1300	70	2	-1	1400
6001	LINDSEY		01/16/86	7:45	10.5	7.3	6.7	458	38	80			2200	56	2	-1	2300
018	LINDSEY		02/27/86	7:50	16.5	6.8	3.0	208	46	60			790	26	-1	-1	820
033	LINDSEY		03/13/86	7:30	13.5	7.1	6.2	221	68	100			1300	47	1	-1	1300
048	LINDSEY		04/23/86	7:30	18.5	7.6	5.3	387	48	70			1100	84	6	-1	1200
083	LINDSEY		05/28/86	6:00	20.0	8.0	6.0	528	26	25			380	38	5	2	430
115	LINDSEY		06/25/86	6:35	21.5	8.0	7.2	461	38	20			350	36	4	1	390
135	LINDSEY		07/23/86	6:35	20.5	7.7	7.4	431	32	30							
156	LINDSEY		08/27/86	6:45	20.5	7.6	6.7	514	50	40			930	65	4	-1	1000
203	LINDSEY		09/09/86	6:35	18.5	7.8	7.6	466	37	40			860	71	5	-1	940
273	LINDSEY		11/05/86	9:15	14.5	7.5	8.5	490	25	25	5.2		780	59	5	-1	840
295	LINDSEY		12/03/86	8:25				496	22	25	5.4		800	80	4	-1	880
001	LINDSEY		01/08/87	8:30	7.5	7.3	10.1	492	24	20	4.4		520	66	-1	-1	590
023	LINDSEY		02/05/87	8:50	10.0	7.5	9.6	547	24	20	4.7		550	76	-1	-1	630
001	LINDCEV		03/03/87	8:15	11.0	8.0	9.9	518	37	20	6.3		1200	62	-1	-1	1300

Note: Negative values signify reporting limits. Concentration of analyte below reporting limit.

1

and the second

(The second seco

TIM	DATA	DEDODT
11110	DATA	REPURI

言語

, ugo												<	THMFor	mation	Potentia	al>
				TEMP	pН	DO	EC	TURB	COLOR	TOC	DOC	CHC13 CH	BrC12 (HBr2CI	CHBr3	TTHMFP
LAB#	STA. NAME	SAMP.DATE	TIME	OC		mg/L	uS/cm	T.U.	C.U.	mg/L	mg/L	<		ug/L		>
7164	LINDSEY	04/09/87	7:00	16.5	7.9	8.7	606	25	20	5.8		870	120	9	-1	1000
7198	LINDSEY	05/13/87	7:00	23.5	7.9	7.3	530	24	20	5.0		160	85	12	-!	260
7234	LINDSEY	06/04/87	7:15	19.5	7.9	7.7	593	38	25	6.2		800	6/	6	i -1	8/0
7387	LINDSEY	09/03/87	8:30	21.2	7.5	6.5	461	90	25	7.2		1200	63	2	-1	1300
7428	LINDSEY	10/08/87	11:55	20.0	7.4	8.1	523	21	25	5.7		630	62	3	5 -1	/00
7531	LINDSEY	11/03/87	8:25	15.5	7.6	8.2	513	19	20	7.2		1200	63	4	-1	1300
7554	LINDSEY	12/01/87	8:30	10.9	7.4	9.7	509	19	25	6.0		720	47	3	-1	770
8003	LINDSEY	01/06/88	12:34	11.2	7.3	10.0	723	20	60	8.6		950	72	5	-1	1000
8110	LINDSEY	02/18/88	12:30	11.7	7.3	9.7	551	50	50	7.8		1500	48	4	2	1600
8208	LINDSEY	03/17/88	8:39	14.1	7.5	10.1	. 547		60	5.4		680	52	5	i -1	740
8245	L INDSEY	04/14/88	9:36	18.4	7.8	8.9	593			5.6		850	56	7	3	920
8389	LINDSEY	05/19/88	10:27	20.2	7.8	4.6	605	29	60	6.0		810	66	6	-1	880
8412	LINDSEY	06/07/88	7:30	17.7	7.6	4.3	525	37	80	5.2		660	53	5	i 1	720
8451	LINDSEY	07/06/88	8:04	21.2	7.6	7.6	325	42	60	3.2		570	36	4	-1	610
8573	LINDSEY	08/02/88	12:48	21.7	8.1	8.3	287	42	60	3.9		590	45	2	-1	640
8693	LINDSEY	09/15/88	7:55	18.7	7.5	8.6	259	25	40	3.2		380	29	2	2 -1	410
3722	LINDSEY	10/13/88	8:35	17.0	8.0	9.1	274	20	50	3.0		370	33	3	-1	410
3760	LINDSEY	11/17/88	9:16	12.8	7.8	9.5	258	19	35	2.8		320	34	3	-1	360
3806	LINDSEY	12/06/88	9:15	10.2	7.2	11.0	249	17	30	3.1		330	39	3	-1	370
8554	L POTATOWHITE	07/19/88	11:10	25.5	7.4	7.0	159	10	15		1.7	360	17	-1	-1	380
3612	I POTATOWHITE	08/10/88	8:33	21.9	7.8		167	10	10		2.3	240	16	-1	-1	250
3627	I POTATOWHITE	08/17/88	8:40	22.2	7.7		189	8	15		2.2	220	22	1	-1	240
2654	I POTATOWHITE	08/24/88	8:25	21.8	8.1		192	12	15		3.6	340	20	2	-1	360
2670	LPOTATOWHITE	08/31/88	8:30	24.0	8.0				10		3.7	310	26	2	-1	340
777	L POTATOWHITE	11/30/88	11.48	10.6	8.2	8.5	177	22			4.8	600	29	2	-1	630
2701	LPOTATOWHITE	12/07/88	9.55	10.0	8.3	9.6	203	9	20		4.5	400	28	4	-1	430
0021	LPOTATOWHITE	12/20/88	9-55	8.6	8.0	10.3	209	7	15		2.5	310	27	2	-1	340
00/0	LPOTATOWHITE	12/28/88	8.50	6.5	7.6	11.4	194	9	20		2.6	340	25	1	-1	370
0552	LPOTATOMITTE	07/19/88	10.25	25.0	7.5	7.2	158	9	20		1.8	370	15	-1	-1	380
0000	LEOTTEDN	09/10/88	8.14	22.0	7.7		169	10	10		2.2	250	17	-1	-1	270
0011	LPOTTERM	09/17/99	8.10	21 8	1.1		175	8	10		2.3	430	18	-1	-1	450
020	LPOTTEDM	00/11/00	9.10	21.0	77		198	10	15		4.0	260	20	2	-1	280
0003	LPUTTERM	00/24/00	9.15	23.0	73		150	10	10		3 1	370	17	-1	-1	390
009	LPUTTERM	11/20/00	10.10	10.0	0 1	0 0	172	22	50		4 9	710	19	2	-1	730
\$776	LPUTTERM	10/07/00	0.20	10.0	0.1	0.0	221	12	25		5.4	440	35	6	-1	480
\$790	LPUTTERM	12/07/00	0:00	0.0	7.0	10.7	216	0	15		33	330	31	4	-1	360
818	LPUTTERM	12/20/88	9:00	0.7	7.4	11.0	106	0	25		3.0	370	22	3	-1	390
8845	LPUTTERM	12/28/88	8:20	0.7	7.0	11.0	190	10	20		2.6	300	31	2	-1	420
059	LPOTTERM	01/11/89	8:40	0.0	1.0	11.5	217	10	20		3.0	220	26	2		250
079	LPOTTERM	01/18/89	8:41	6.9	8.3	11.5	212	8	30		3.8	150	10	2	-1	100
9104	LPOTTERM	01/26/89	10:01	8.6	6.6	11.0	234	b	10		0.0	150	13	2	-1	200
3117	LPOTTERM	02/02/89	8:50	8.3	1.3	10.3	249	6	20		3.8	350	23	4	-1	380
3374	LPOTTERM	06/01/89	7:50	19.8	8.1	8.1	169	1	10		3.9	580	220	80	0	890
3387	LPOTTERM	06/08/89	7:30	19.8	8.3	10.0	161	8	5		2.4	260	15	-1	-1	2/0
3400	LPOTTERM	06/15/89	8:15	21.6	7.6	8.4	181	11	15		2.3	320	24	2	-1	350
3413	LPOTTERM	06/19/89	8:35	21.1	8.0	8.3	181	9	15		2.1	250	18	2	-1	270
9494	LPOTTERM	07/06/89	7:30	20.5	8.2	8.9	143	7	20		2.7	260	15	0	0	280

Note: Negative values signify reporting limits. Concentration of analyte below reporting limit.

Page 14

Page 15

]

1

3

1

3

1

APPENDIX B

	Carbon Contractor Contractor	
T1 11 4	DATA	00001
1 1104	11010	REPUR
	0010	

												<	- THMFor	mation P	otentia	al>
				TEMP	pН	DO	EC	TURB	COLOR	TOC	DOC	CHC13 C	HBrC12 (CHBr2CI	CHBr3	TTHMFP
LAB#	STA. NAME	SAMP.DATE	TIME	OC	ويتوجيده	mg/L	uS/cm 1	T.U.	C.U.	mg/L	mg/L	<		ug/L -		>
9507	I POTTERM	07/13/89	8.18	23.2	7.9	8.9	170	7	15		1.9	260	27	38	1	330
9520	I POTTERM	07/20/89	6:45	22.5	7.3	8.6	133	8	15		2.1	300	12	0	0	310
9597	L POTTERM	07/25/89	8.24	22.3	7.8	9.2	120	13				360	22	1	0	380
0522	I POTTERM	07/27/89	6.25	21.6	83	8.7	120	13	10		2.0	220	21	1	n	250
5064	MALLARDIS	05/08/85	7.00	16.0	7.8	8.7	9290	14	10		2.0	12	84	330	650	1100
5004	WALLARDIS	05/29/85	8.35	17.0	7.7	87	1 272	0 26	8			12	01	000	000	1100
5090	MALLARDIS	06/12/85	7.00	21 5	7.8	8.0	2080	19	5			65	170	340	300	880
5115	WALL ADDIS	08/14/85	7.30	10 0	8.0	8.5	8480	10	5			61	54	250	680	1000
5120	WALLARD IS	00/14/05	7.35	18.5	7.0	8.2	7320	12	5			21	94	200	500	000
5141	WALLADDIS	10/09/85	7.35	17.0	8.0	8 4	6330	10	5			21	140	340	520	1000
5170	MALLARD IS	11/19/85	10-15	11.5	8 1	9.9	13100	່ັ	۵ F			21	110	010	520	1000
5185	MALLARDIS	12/03/85	10.10	12.0	7 5	9.9	9970	2 g	8	·		11	72	340	640	1100
6002	WALL ARD IS	01/16/86	9-40	10.0	7.7	10.2	10700	16	20			5	44	320	990	1400
6019	MALLARDIS	02/27/86	9.55	14 5	7.0	8.8	169	58	25			490	29	1	-1	520
6035	MALLARDIS	02/13/86	11.30	13.0	73	9.4	161	51	30			670	38	2	-1	710
6050	MALLARDIS	04/23/86	9.15	16.5	7.3	8 9	226	22	20			440	64	8	-1	510
6085	MALLARDIS	05/28/86	8-15	17.0	7.6	8.6	4160	26	15			39	88	260	350	740
6117	MALLARDIS	06/25/86	10.35	21.0	7.7	8.1	4250	36	10			24	84	78	320	510
6158	MALLARDIS	08/27/86	8-45	20.5	7.8	8.9	3970	36	5			44	150	350	300	840
6205	MALLARDIS	09/09/86	8-15	18 5	7.9	8 7	6180	63	5			28	130	440	690	1300
6275	MALLARDIS	11/05/86	11-45	17.5	77	9.5	4550	13	5	1.5		25	80	160	280	550
6297	MALLARDIS	12/03/86	11.45	13.0	7.5	9.7	7330	13	5	1.4		400	20	-1	-1	420
7003	MALLARDIS	01/08/87	11.45	9.0	7.5	10.5	7800	21	5	1.7		16	75	180	400	670
7025	MALLARDIS	02/05/87	11:30	11.0	7.7	10.6	5780	18	10	2.0		30	88	73	280	470
7063	MALLARDIS	03/03/87	11:15	11.5	7.4	9.9	2280	30	15	3.3		160	250	220	270	900
7167	MALLARDIS	04/09/87	10:00	18.0	7.6	9.2	1780	45	10	3.2		230	370	340	210	1200
7200	MALLARDIS	05/13/87	9:30	23.0	8.2	5.0	7480	20	5	2.3		26	140	290	480	940
7236	MALLARDIS	06/04/87	10:30	20.5	7.9	8.5	12000	12	10	1.9		10	57	250	500	820
7430	MALLARDIS	10/08/87	8:15	20.8	7.9	7.4	12200	12	10	1.7		3	19	160	450	630
7533	MALLARDIS	11/03/87	11:20	18.8	7.8	7.8	13700	13	5	2.1		1	28	210	660	900
7556	MALLARDIS	12/01/87	11:40	13.2	7.9	8.2	15600	22	5	1.7		-1	-1	170	790	960
8005	MALLARDIS	01/06/88	10:00	7.8	8.0	11.4	7070	18	15	3.7		17	73	250	540	880
8112	MALLARDIS	02/18/88	9:45	12.0	8.0	11.5	5400	28	20	2.6		35	170	500	540	1200
8210	MALLARDIS	03/17/88	11:09	15.0	7.8	9.0	7760	18	20	2.0		18	110	350	590	1100
8246	MALLARDIS	04/14/88	11:16	17.5	7.8	8.7	3590			2.3		35	110	220	220	590
8391	MALLARDIS	05/19/88	8:38	18.4	7.8	8.4	9110	28	35	1.6		8	50	250	550	860
8413	MALLARDIS	06/07/88	9:26	8.3	8.4	7.9	9540	21	40	1.5		8	64	200	430	700
8453	MALLARDIS	07/06/88	10:00	23.4	7.9	7.5	11500	11	20	0.8		8	44	240	720	1000
8575	MALLARDIS	08/02/88	10:30	21.7	7.9	8.0			25	1.9		160	91	310	530	1100
8696	MALLARDIS	09/15/88	9:55	19.9	7.6	8.3	11000	22	20	2.4		14	40	190	480	720
8725	MALLARDIS	10/13/88	10:40	18.2	7.8	8.4	9930	15	35	2.4		7	47	150	330	530
8763	MALLARDIS	11/17/88	11:20	15.0	7.9	9.2	15000	20	15	2.2		7	41	180	670	900
3809	MALLARDIS	12/06/88	11:15	12.9	7.4	10.4	16400	19	15	2.1		4	42	190	600	840
3335	MAZE	05/03/88	7:38	15.7	7.8	8.3	1480	28	25	3.8		390	160	120	41	710
3427	MAZE	06/14/88	7:20	No. of the		1000					4.1	250	160	120	20	550
3426	MAZE	06/14/88	7:20	23.0	7.8	6.9	1350	52	40	3.6		370	190	100	18	680

Note: Negative values signify reporting limits. Concentration of analyte below reporting limit.

APPENDIX	B

TIBL	DATA	DEDODT
1 FIM	UAIA	KEPUKI

and the second

I

Page	16							THM	DATA F	REPORT						
												<	THMFor	rmation F	Potentia	al
				TEMP	pH	DO	EC	TURB	COLOR	TOC	DOC	CHC13	CHBrC12	CHBr2CI	CHBr3	TTHMFP
_AB#	STA. NAME	SAMP.DATE	TIME	oC		mg/L	uS/cm	T.U.	C.U.	mg/L	mg/L	<		· ug/L ·		>
					~~~	992944										
8462	MAZE	07/12/88	7:19								4.2	440	280	160	34	910
8461	MAZE	07/12/88	7:19	23.5	7.9	7.1	1530	64	35	4.0		650	240	160	26	1100
8584	MAZE	08/09/88	9:00	22.4	7.8	6.8	1360	i			4.3	310	180	120	27	640
8583	MAZE	08/09/88	9:00	22.4	7.8	6.8	1360	96	40	4.0		530	160	98	16	800
8687	MAZE	09/06/88	7:20	24.6	7.8	6.1					4.2	270	210	150	42	670
8686	MAZE	09/06/88	7:20	24.6	7.8	6.1	1480	33	40	4.1		390	220	120	41	770
8712	MAZE	10/04/88	7:34	18.5	8.0	8.8			25	4.6		310	230	170	25	740
8713	MAZE	10/04/88	7:34	18.5	8.0	8.8					4.4	260	190	140	30	620
8712	MAZE	10/04/88	7:34	18.5	8.0	8.8	1530	22	25	4.6		310	230	170	25	740
8743	MAZE	11/01/88	8:54	15.8	7.5	8.3					3.6	140	150	120	18	430
3742	MAZE	11/01/88	8:54	15.8	7.5	8.3	1290	21	25	4.4		260	150	110	-1	520
3812	MAZE	12/13/88	8:57	10.4	7.4	9.3	1280	14	20	4.6		310	240	130	16	700
7118	MCCORWIL01	03/25/87	12:00	15.0	7.2	9.2	494	44	15	4.3		460	40	4	-1	500
7312	MCCORWIL01	08/07/87	12:10	22.0	6.9	6.5	186	60				400	11	-1	-1	410
7483	MCCORWIL01	10/20/87	7:00	16.4	7.3	5.5	337	34	5	6.7		1000	40	10	-1	1100
8165	MCCORWIL01	03/08/88	10:28	12.5	7.3		386	10	25	6.9		750	25	2	-1	780
3266	MCCORWIL01	04/18/88	11:23	17.5	6.9	6.	1 33	3 2	2 60	7.3	3					
3375	MCCORWIL01	05/09/88	10:02				250	16	60		6.4	670	47	1	-1	720
3351	MCCORWIL01	05/09/88	10:27	22.2	7.1	4.8	250	16	60		6.6	610	41	7	-1	660
3487	MCCORWIL01	07/18/88	10:48	25.5	7.0	4.9	166	32	80		3.3	380	8	-1	-1	390
016	MCCORWIL01	01/03/89	12:35	7.6	7.6	10.6	311	16	40		8.0	390	20	3	-1	410
119	MCCORWIL02	03/25/87	12:45	17.0	7.2	9.8	487	23	5	4.2		370	36	3	-1	410
313	MCCORWIL02	08/07/87	12:45	25.3	7.7	7.1	173	54			2.3	380	9	-1	-1	390
7484	MCCORWIL02	10/20/87	7:20	15.0	7.2	4.9	35	5 96	6 0	4.7		8	2 16	5 -	-1 -	1 9
8166	MCCORWIL 02	03/08/88	10:44	9.5	7.3		458	20	25	6.2		760	30	-1	1	790
3267	MCCORWIL 02	04/18/88	11:54	17.5	6.9	6.6	5 15	3 2	9 80	8.1		10000	(25)		1	0.755
352	MCCORWIL 02	05/09/88	10.52	21.7	7.4	6.2	204	31	30	0.77	4.7	650	14	-1	-1	660
488	MCCORWIL 02	07/18/88	11:13	25.4	6.9	4.9	167	56	100	3.6		430	8	-1	-1	440
009	MIDDI FR	02/06/85	8:30	6.5	7.3	11.2	391	13	25			780	84	20	-1	880
025	MIDDLER	03/06/85	9.00	10.0	7 4	10.0	33	9 1	2					20		000
043	MIDDLER	04/05/85	7.30	17.0	7.5	8.9	378	6	5			300	76	16	-1	390
059	MIDDLER	05/01/85	6.50	19.0	7.6	9.3	303	q	10			410	68	10	-1	490
075	MIDDLER	06/05/85	6.40	20.0	7.8	9.0	252	17	5			550	67	8	-1	630
097	MIDDLER	06/07/85	8-05	23.5	77	8 9	25	6 1	6			000		0		000
110	MIDDLER	08/01/85	7.00	22 n	74	7.8	331	12	20			660	110	26	1	800
136	MIDDLER	10/23/85	11.15	18.0	7.5	9.4	396	7	10			380	120	45	2	550
171	MIDDLER	12/03/85	12.15	11.5	7.4	10.3	464	8	12			340	160	68	5	570
020	WIDDLED	02/11/96	10.20	14.5	7.2	8.2	343	24	25			520	110	12	1	650
044	MIDDLER	04/17/96	7.20	14.0	7 3	8.0	212	12	25			440	03	0	-1	510
070	MIDDLER	05/12/00	8.20	10 5	7.0	0.0	213	12	20			490	76	11	-1	570
110	MIDDLER NIDDLER	06/11/00	6.15	22 5	7.2	7.0	270	14	20			200	25		-1	420
120	MIDDLER	07/00/00	6.20	22.5	7.0	7.7	212	14	15			200	50	0	-1	420
140	MIDDLER	00/10/00	6.20	23.5	7.3	7.0	203	14	10			320	52	D	-1	360
149	MIDDLER	00/13/80	0:30	23.0	7.3	7.5	200	10	20			240	60	10	1	400
190	MIDDLEK	11/10/00	0:30	21.5	7.3	1.5	284	10	20	2.4		340	68	13	-1	420
201	MIDDLEK	12/10/00	11:55	14.5	7.4	9.1	230	9	10	2.4		380	41	D	-1	430
298	MIDULEK	12/10/86	12:50	10.0	1.2	9.0	25	12	10	2.8						

Note: Negative values signify reporting limits. Concentration of analyte below reporting limit.

Page	17							IM	UATA	REFURI			-			e
				7510	-11	00	50	TIND	001.00	TOC	000	CHC13 CH	IHMFORM Brc12 Cl	Br 201 C	HBr3 1	THMEP
LAB#	STA. NAME	SAMP.DATE	TIME	OC OC	pn	mg/L	uS/cm	T.U.	C.U.	ng/L	mg/L	<		ug/L		>
												210	74	7	1	200
7006	MIDDLER	01/13/87	12:15	8.5	7.3	10.0	333		20	4.0		510	74	200	-1	000
048	MIDDLER	02/10/87	11:45	11.5	7.2	9.8	384	9	20	5.3		520	18	280	-1	420
7067	MIDDLER	03/10/87	12:00	13.5	7.1	8.8	436	11	20	5.1		340	100	9	-1	420
7169	MIDDLER	04/16/87	10:00	20.0	7.2	7.8	440	8	10	4.1		540	100	15	-1	200
7204	MIDDLER	05/20/87	9:30	21.5	7.2	6.8	293	10	10	2.4		320	61	12	-1	390
7242	MIDDLER	06/11/87	10:45	23.0	6.9	8.9	404	9	15	2.8		290	82	21	-1	390
7404	MIDDLER	09/24/87	10:00	21.6	7.3	7.1	603	8	15	3.0		210	89	41	4	340
7447	MIDDLER	10/28/87	10:15	20.5	7.3	7.3	565	6	5	2.9		194	151	85	9	440
7545	MIDDLER	11/24/87	11:45	14.5	7.2	8.5	645	5	10	3.5		290	120	66	D	480
7604	MIDDLER	12/16/87	7:45	9.6	7.5	11.1	581	12	25	4.7		460	130	40	3	530
8072	MIDDLER	01/21/88	7:39	7.8	7.2	10.8	445	13	50	5.9		620	130	22	-1	110
8130	MIDDLER	02/23/88	7:15	12.0	7.2	10.8	321	9	20	3.7		260	40	4	-1	300
8221	MIDDLER	03/24/88	7:30	17.9	7.2	9.4	472	4	20	2.9		270	68	25	2	3/0
8320	MIDDLER	04/28/88	7:35	17.5	7.7	8.7	324	9	25	2.9		390	70	19	-1	480
8397	MIDDLER	05/26/88	9:30	19.5	8.2	8.6	340	25	40	2.7		380	59	15	-1	450
8429	MIDDLER	06/22/88	7:34	23.0	7.0	6.8	396	15	40	3.9		360	-1	28	-1	390
8464	MIDDLER	07/14/88	10:00	22.4	7.4	7.4			35	3.9		500	83	30	2	620
8602	MIDDLER	08/10/88	8:23	22.7	7.9				25		3.1	350	130	41	2	520
8586	MIDDLER	08/16/88	9:40	22.9	7.4	7.5	401	9	25	2.3		270	90	50	4	410
8620	MIDDLER	08/17/88	9:46	23.4	7.6		401	11	25		3.1	200	81	45	2	330
8628	MIDDLER	08/17/88	9:34	23.4	7.7		398	9	20		2.9	270	82	49	2	400
3650	MIDDLER	08/24/88	9:25	22.8	7.8		373	8	20		3.0	760	84	39	3	890
3649	MIDDLER	08/24/88	9:35	22.8	7.8		373	10	20		3.3	220	81	37	3	340
3665	MIDDLER	08/31/88	9:35	23.6	8.5				20		4.7	370	110	51	6	540
3698	MIDDLER	09/22/88	7:32	20.3	7.3	7.6	442	6	20	2.7		320	68	24	8	420
8727	MIDDLER	10/20/88	8:55	19.8	7.3	8.0	501	36	25	4.9		660	66	55	4	790
8749	MIDDLER	11/10/88	9:05	16.7	8.0	8.5	660	5	30	3.6		280	140	110	11	540
8780	MIDDLER	11/30/88	12:10	11.8	7.9	9.9	596	5	25		4.7	370	180	82	6	640
8794	MIDDLER	12/07/88	11:00	10.6	8.2	9.4	529	11	25		5.1	410	110	32	4	560
8823	MIDDLER	12/20/88	10:55	8.5	7.9	10.0	603	9	35		5.5	660	190	64	3	920
8832	MIDDLER	12/20/88	10:20	10.7	7.3	10.7	608	8	35	5.7		590	200	87	5	880
8850	MIDDLER	12/28/88	9:59	7.0	7.7	11.4	564	7	35		5.8	570	140	48	3	760
9064	MIDDLER	01/11/89	10:15	6.2	8.0		469	9	35		5.7	590	130	44	1	770
9084	MIDDLER	01/18/89	10:15	6.9	7.2	10.6	414	8	35		5.7	520	100	26	-1	650
9109	MIDDLER	01/26/89	9:40	7.5		11.2	434	7	30			330	84	16	1	430
9096	MIDDLER	01/31/89	9:45	9.6	7.0	10.9	428	6	35	4.6		320	99	25	2	450
9122	MIDDLER	02/02/89	10:45	8.1	7.6	10.3	449	5	25		4.8	320	94	29	2	450
9186	MIDDLER	02/28/89	9:20	13.1	6.8	10.4	438	6	20	3.6		700	150	58	2	910
9239	MIDDLER	03/28/89	7:49	15.5	7.0	7.7	271	10	35	4.9		570	83	18	-1	670
9336	MIDDLER	04/25/89	7:12	16.7	8.4	8.5	200	8	25	3.3		370	34	3	-1	410
0366	MIDDLER	05/23/89	7:03	19.4	8.3	8.0	259	1	25	3.1		340	44	6	-1	390
9379	MIDDLER	06/01/89	9:50	20.5	8.0	11.2	255	13	30		4.3	330	40	5	-1	370
0303	MIDDLER	06/08/89	9.15	21.3	7.8	9.5	240	17	35		3.2	290	27	2	-1	320
9405	MIDDLER	06/15/89	7.15	24.3	7.5	7.1	271	16	30		2.9	400	60	13	-1	470
UUTE	mibblen	00/10/00		00.4			000	10	40		2 6	220	55	0	-1	390
9418	MIDDI FR	06/19/89	8:11	22.4	1.5	(.)	200	10	40		2.0	330	55	3	~ •	000

Note: Negative values signify reporting limits. Concentration of analyte below reporting limit.

Page	18							THM	UATA	REPURI						
												<	- THMForm	nation Po	otenti	al>
272		-		TEMP	pH	DO	EC	TURB	COLOR	TOC	DOC	CHC13 C	HBrC12 C	HBr2C1	CHBr3	TTHMFP
LAB#	STA. NAME	SAMP.DATE	TIME	00		mg/L	us/cm	1.0.	C.U.	mg/L	mg/L	<		ug/L		>
9499	MIDDLER	07/06/89	6:30	23.6	7.6	7.2	248	12	35		3.1	480	53	8	0	540
9512	MIDDLER	07/13/89	9:10	24.2	8.0	8.0	229	9	25		2.8	360	49	8	0	420
9560	MIDDLER	07/18/89	9:15	26.6	7.2	7.8	244	12	25		2.8	310	44	1	0	360
9525	MIDDLER	07/20/89	9:17	24.8	6.5	7.9	248	11	35		3.2	370	55	10	0	440
9588	MIDDLER	07/25/89	9:50	25.7	7.8	8.2	200	10				360	84	11	0	460
9538	MIDDLER	07/27/89	9:05	24.2	7.4	8.1	229	10	20		2.7	320	50	10	0	380
8603	MIDWOODWARE	08/10/88	8:10	22.6	7.8				20		2.8	230	94	40	2	370
8644	MIDWOODWARE	08/10/88	8:10									210	86	33	2	330
8643	MIDWOODWARD	08/17/88	9:34							2.5		230	94	49	2	380
8651	MIDWOODWARD	08/24/88	9:25							2.4		1200	73	41	4	1300
8666	MIDWOODWARD	08/31/88	9:25	23.7	8.4				20		3.5	300	93	50	3	450
8667	MIDWOODWARD	08/31/88	9:25	23.7	8.4					2.9		260	89	46	3	400
8793	MIDWOODWARD	12/07/88	10:45	10.5	8.0	9.2	511	10	30		5.0	410	150	54	3	620
8822	MIDWOODWARD	12/20/88	10:40	8.5	7.8	9.9	611	9	30		5.3	440	170	69	3	680
8849	MIDWOODWARD	12/28/88	9:02	6.5	7.5	11.1	586	10	40		7.2	780	180	32	-1	990
8551	MOKGEORG I AN	A 07/19/88	9:50	24.0	7.6	7.5	151	7	10		1.5	370	15	-1	-1	380
8610	MOKGEORGIAN	A 08/10/88	7:56	21.8	7.6		164	8	10		2.2	290	37	9	-1	340
8625	MOKGEORGIAN	A 08/17/88	7:53	21.8			175	9	15		1.9	300	15	-1	-1	310
8652	MOKGEORGIAN	A 08/24/88	7:52	21.8	7.9		187	8	10		2.4	1200	16	-1	-1	1200
8668	MOKGEORGIAN	A 08/31/88	8:00	24.0	6.8				10		3.0	290	-1	15	-1	310
8775	MOKGEORG I AN	A 11/30/88	9:47	9.9	8.4	8.9	175	29	50		6.4	620	27	2	-1	650
8789	MOKGEORG I AN	A 12/07/88	9:00	10.2	8.0	10.3	196	9	15		5.4	290	28	3	-1	320
8819	MOKGEORGIAN	A 12/20/88	9:20	8.5	7.9	11.0	179	8	10		2.0	210	15	1	-1	230
9060	MOKGEORG I AN	A 01/11/89	8:55	6.4	8.1		200	13	30		3.7	360	19	1	-1	380
9080	MOKGEORG I AN	A 01/18/89	10:43	7.9	6.9	11.4	201	14	30		3.2	380	18	1	-1	400
9105	MOKGEORG I AN	A 01/26/89	7:50	7.3	7.4	11.2	261	6	20			200	18	4	-1	220
9118	MOKGEORG I AN	A 02/02/89	9:50	8.4	7.6	10.4	213	6	20		2.7	250	20	2	-1	270
9375	MOKGEORG I AN	A 06/01/89	8:10	19.6	7.8	8.7	157	7	5		2.6	210	12	-1	-1	220
9388	MOKGEORGIAN	A 06/08/89	7:55	20.4	7.9	9.3	152	7	5		2.1	250	12	-1	-1	260
9401	MOKGEORGIAN	A 06/15/89	6:45	21.5	8.5	8.2	164	9	10		3.0	480	41	5	-1	530
9414	MOKGEORGIAN	A 06/19/89	6:39	20.6	7.9	8.5	155	6	10		2.0	250	11	-1	-1	260
9495	MOKGEORGIAN	A 07/06/89	7:15	21.2	7.8	9.2	145	7	10		2.2	360	100	7	0	470
9508	MOKGEORGIAN	A 07/13/89	6:33	21.5	7.9	8.7	144	10	10		3.0	280	25	12	0	320
9521	MOKGEORG I AN	A 07/20/89	8:20	22.5	6.6	9.1	127	8	10		1.8	270	9	0	0	280
9596	MOKGEORG I AN	A 07/25/89	8:00	21.4	7.7	9.1	120	10				350	10	0	0	360
9534	MOKGEORG I AN	A 07/27/89	8:09	21.3	7.3	9.2	120	20	5		1.7	220	8	0	0	230
7123	MOSSDALE01	03/31/87	7:15	14.0	7.2	6.0	1650	6	25	12.0		800	250	59	-1	1100
7317	MOSSDALE01	08/14/87	9:20	18.9	6.9	2.9	842	72			7.2	860	110	16	-1	990
7488	MOSSDALE01	10/15/87	12:10	17.4	7.5	4.7	630	4	0	2.5		120	76	29	5	230
8355	MOSSDALE01	05/09/88	8:32	16.4	7.1	2.8	680	23	30	No. Com	3.4	290	120	46	-1	460
8492	MOSSDALE01	07/18/88	7:02	24.0	7.6	8.1	1000	260	100		6.8	420	150	44	2	620
7124	MOSSDALE02	03/31/87	7:30	15.0	7.6	2.4	722	50	5	3.3	0.000	220	94	29	-1	340
7318	MOSSDALE02	08/14/87	9:05	20.0	7.3	3.6	690	22			3.7	520	120	27	-1	670
3036	MOSSDALE02	01/12/88	9:30	10.7	7.3	5.0	667	88	15	2.5		210	80	24	3	320
8173	MOSSDALE02	03/08/88	9:30	14.7	7.5	5.0	699	9	15	3.3		390	150	40	7	590
0071	MOCCOAL EO2	04/19/99	0.20	14 0	7 2	10	1770	12	50	10.0			25.5	1075	12	1000

Note: Negative values signify reporting limits. Concentration of analyte below reporting limit.

1

and the second

1

1

1

Contraction of the local division of the loc

1

}

3

Page	19							THM	DATA F	REPORT						
												<	THMFo	rmation f	Potent	ial
				TEMP	pH	DO	EC	TURB	COLOR	TOC	DOC	CHC13	CHBrC12	CHBr2CI	CHBr3	TTHMFF
LAB#	STA. NAME	SAMP.DATE	TIME	0C		mg/L	uS/cm	T.U.	C.U.	mg/L	mg/L	<		- ug/L ·		>
0050	LOCCOM FOO	05/00/22	9.40	10.2	0 5	0.0	022		15		2.4	250	150	120	17	050
0400	MUSSDALEUZ	07/19/08	0:40	18.3	0.0	9.0	923	4	10	E 4	3.4	300	1 10	130		000
7105	MUSSDALEUZ	02/21/07	0.15	12 5	7.0	0.7	512	40	70	0.4 0.4		400	140	11	0	0 020
7120	MUSSDALEUS	00/11/07	8:10 0.4E	13.5	1.0	4.0	000	50	5	2.4	0.4	1100	100	10	-	280
7319	MUSSDALEU3	02/01/07	8:45	10.5	0.9	3.5	980	5Z	0	1.5	8.4	1100	160	22	-	1300
7120	MUSSUALEU4	03/31/8/	8:30	16.0	1.5	3.0	7100	4	U	1.0		150	08	19	-1	240
7000	MUSSUALEU4	00/14/07	8:30	10.0	1.0	3.0	/120	10		1.0	5.0	170	200	19	-1	280
7320	MUSSUALEU4	10/15/07	8:10	17.8	7.3	4.3	1970	13	50		5.9	690	300	78	10	1100
7491	MUSSUALEU4	10/15/8/	11:30	15.4	7.9	4.1	1330	24	00	8.0		090	210	12	9	. 880
8038	MUSSDALEU4	01/12/88	10:00	0.4	7.0	0.3	1000	80	80	5.9		620	97	29	-1	/50
8175	MUSSDALEU4	03/08/88	10:07	13.0	1.5	4.1	1080	40	60	7.6	10	680	170	56	4	910
8273	MUSSDALEU4	04/18/88	10:00	15.7	8.3	5 11.5	0 154	0 1	5 80	9.	4	100	070	170		
8358	MOSSDALE04	05/09/88	9:15	17.6	7.5	5.0	2070	51	40		6.0	490	2/0	170	39	970
8495	MUSSUALEU4	07/18/88	8:00	25.0	1.1	6.9	1120	25	90	10.0	9.1	840	240	73	2	1200
/12/	MUSSUALEU5	03/31/8/	9:00	13.5	7.0	5.6	13/0	15	20	16.0		930	130	11	-1	1100
/321	MOSSDALE05	08/14/8/	7:20	17.9	1.2	3.4	922	1			7.1	950	130	24	-1	1100
/128	MUSSDALEUB	03/31/87	9:20	16.0	8.0	1.8	2410	34	30	14.0		640	330	170	23	1200
1322	MUSSDALEUG	08/05/8/	10:45	23.5	7.1	1.0	969	12	75	07.0	18.0	2300	210	14	-1	2500
/129	MUSSDALEU8	03/31/87	10:00	13.0	7.3	0.6	1100	28	/5	37.0		1500	290	30	-1	1800
/324	MUSSDALEU8	08/05/8/	10:05	24.6	7.3	6.1	886	32	10	10.0	4.4	500	200	110	1	820
/521	MOSSDALE08	10/15/8/	10:40	15.2	7.0	2.8	897	230	40	10.0		/30	150	39	-1	920
/495	MOSSDALE08	10/15/87	8:40	14.9	1.1	2.5	914	140	40	8.1		520	140	37	1-1	700
3275	MOSSDALE08	04/18/88	10:48	15.4	/.5	11.5	89	6 /	80	10.0	J					
/131	MOSSDALE09	03/31/8/	11:45	15.5	8.1	7.5	24/0	2	25	10.0		330	320	240	47	940
/325	MOSSDALE09	08/05/8/	9:50	22.1	1.4	7.1	917	1			9.1	1200	190	46	2	1400
/496	MOSSDALE09	10/15/8/	8:50	14.5	7.3	6.2	9/1	38	15	1.2		310	150	93	6	560
/522	MOSSDALE09	10/15/8/	10:10	14.1	1.1	5.8	958	38	10	8.8		450	150	81	3	680
3276	MOSSDALE09	04/18/88	10:37	15.6	7.3	3.9	101	3 6	3 25	6.0	J	122	122	121		
132	MOSSDALE 10	03/31/87	12:10	19.5	7.3	10.2	//3	9	25	13.0	-	4/0	/4	7	-1	550
326	MUSSDALETU	08/14/87	10:05	18.3	7.3	2.0	1370	3			5.6	640	180	67	4	890
497	MOSSDALETO	10/15/8/	12:35	14.8	7.3	1.8	1290	4	20	5.7		300	140	42	1	480
3043	MOSSDALE 10	01/12/88	8:50	9.3	1.1	2.1	1520	5	50	13.0		1300	190	29	1	1500
3171	MOSSDALE 10	03/08/88	8:45	11.9	6.0	1.6	1360	. /	80	12.0	8	1000	240	45	ļ,	1300
5277	MUSSUALE IU	04/18/88	8:49	14.0	1.3	1.6	1340	J 4	80	17.0	,	000	000		-	
362	MUSSIALE TU	05/09/88	/:54	16.8	1.2	2.5	900	2	60		10.0	980	200	31	-1	1200
499	MUSSDALETU	07/18/88	5:27	22.5	1.5	2.0	992	9	50		6.7	490	150	55	2	/00
327	MUSSUALETT	08/14/8/	9:45	18.2	1.5	9.2	268	34		~ .	5.0	730	36	3	-1	//0
044	MUSSDALETT	01/12/88	9:10	6.8	7.3	5.5	605	250	20	3.4		460	83	20	-1	560
1/2	MOSSDALETT	03/08/88	9:00	11.4	1.3	2.0	653	1/0	40	4.5		110	120	30	-1	260
278	MOSSDALE11	04/18/88	9:09	15.5	1.3	4.9	564	1 15	80	12.0	17.0	1000		2	14	10000
363	MUSSUALE11	05/09/88	8:14	17.8	8.0	6.1	589	19	120		17.0	1600	100	5	-1	1700
500	MUSSUALE11	07/18/88	6:00	23.0	7.4	3.2	1080	14	10	71 GB	7.1	440	190	77	7	710
120	MUSSTRPP01	03/30/87	12:00	21.5	6.8	8.8	1130	7	0	4.4		230	140	38	12	420
121	MUSSTRPP02	03/30/87	13:15	19.0	1.2	4.8	1040	2	10	5.8		290	190	77	27	580
315	MUSSTRPP02	08/14/87	11:05	22.6	1.5	6.2	838	21	-		5.9	1200	150	75	4	1400
486	MUSSTRPP02	10/19/87	11:30	20.3	7.5	7.5	681	19	5	5.3		620	94	43	-1	760
033	MUSSTRPP02	01/12/88	8:00	8.1	7.5	10.6	670	18	40	6.0		490	110	36	1	640

Note: Negative values signify reporting limits. Concentration of analyte below reporting limit.

Constant of the second The second

The second se

- International

Contraction of the second

Constant of

Contraction of the local division of the loc

Statute Statute

Contraction of

Contraction of the

1

- Contraction

the second se

Contraction of the second

AFPENUIA D	A	PP	EN	D	X	В
------------	---	----	----	---	---	---

TURA	DATA	00000
1034	LIAIA	REPURI
11.000	PULL	THE OTT

-

and and

1

1

1

I

1

3

3

1

												<	- THMFor	mation P	otenti	al>
				TEMP	pН	DO	EC	TURB (	COLOR	TOC	DOC	CHC13 CI	BrC12 (	CHBr 2CI	CHBr3	TTHMFP
LAB#	STA. NAME	SAMP.DATE	TIME	OC		mg/L	uS/cm T	.U.	C.U.	mg/L	mg/L	<		ug/L -		>
0100	Incorposoo	02/00/00	10.40	10.0	7.4	12.1	002	10	50	0.0		050	100	10	2	1000
8108	MUSSIKPPUZ	04/10/00	12:40	10.9	1.4	13.1	803	10	UC AC	0.0		900	180	40	2	1200
0250	MUSSIRPPUZ	05/00/00	0.17	17.7	0.1	10 5	010	20	0 40 60		0.0	600	210	00	10	000
0010	MUSSIRPPUZ	01/03/00	9:17	6.4	0.0	10.5	310	20	25		9.0	610	210	09	10	990
3019	MUSSIRPPUZ	02/20/03	10:24	10.0	7.0	0.0	000	10	30	C E	1.9	510	100	/0	0	8/0
7122	MUSSTRPPU3	00/14/07	12:45	19.0	7.8	8.9	400	10	15	0.0		510	92	11	-1	010
7310	MUSSTRPPU3	10/10/07	10:45	22.8	7.0	7.0	501	20	F	9.4		030	70	21	-1	730
1401	MUSSTRPPUS	01/12/00	0.20	20.5	7.4	1.0	770	23	60	12.0		400	00	30	2	090
8034	MUSSTRPPU3	01/12/88	8:20	8.2	1.3	17.0	779	20	00	13.0		1100	78	10	-	930
8169	MUSSTRPPU3	03/08/88	13:00	17.3	1.3	17.3	951	14	80	10.0		1100	220	55	2	1400
8269	MUSSTRPPU3	04/18/88	11:33	0.0	1.1	8.9	740	ZI	40	1.3	10.0	070	100			1100
8354	MUSSTRPPU3	05/09/88	8:5/	10.9	0.8	8.5	512	23	80		12.0	870	190	34	-1	1100
/134	NETHERLANDUT	03/25/87	15:45	17.5	8.0	9.9	1550	24		5.7		270	200	/6	18	560
/328	NETHERLANDUT	08/13/8/	7:30	17.6	1.5	8.1	289	132	0		5.5	650	32	3	-1	690
/499	NETHERLANDUT	10/20/8/	8:30	16.5	1.4	8.5	270	106	0	3.4		180	32	3	-1	220
8045	NETHERLANDUT	01/12/88	8:00	5.9	1.5	10.2	825	51	60	6.4		750	120	30	-1	900
8180	NETHERLANDUT	03/08/88	7:38	9.1	8.1		1250	23	30	5.2		520	150	62	5	740
8301	NETHERLANDO1	04/18/88	7:09	14.0	1.3	8.3	270	102	20	3.3						
8364	NETHERLANDOT	05/09/88	7:10	18.4	1.8	8.0	396	80	40		3.5	430	54	9	-1	490
8501	NETHERLANDOT	07/18/88	7:16	21.8	1.4	7.6	222	190	35		3.1	470	14	-1	-1	480
/135	NETHERLANDU2	03/25/8/	16:15	19.5	8.0	12.0	1030	125	15	6.5		750	1/0	34	-1	950
/329	NETHERLANDU2	08/13/8/	7:00	18.6	1.3	5.0	243	100	-		4.1	860	17	-1	-1	880
/500	NETHERLANDO2	10/20/87	8:00	15.7	1.3	5.6	303	125	5	4.4		320	38	-1	-1	360
8046	NETHERLANDO2	01/12/88	7:30	5.4	1.5	10.1	819	54	60	6.4		740	130	28	-1	900
3181	NETHERLANDO2	03/08/88	7:24	7.3	8.1		1480	44	35	6.3		630	260	110	8	1000
3279	NETHERLANDO2	04/18/88	6:37	14.0	7.1	7.0	261	108	60	3.5						
3365	NETHERLANDO2	05/09/88	6:46	17.6	7.7	6.8	376	92	40		5.2	380	62	9	-1	450
3502	NETHERLANDO2	0//18/88	6:48	22.4	1.2	4.8	206	92	35		3.2	430	10	-1	-1	440
/136	PESCADER001	04/01/87	10:00	15.5	7.3	7.5	2040	9	0	4.2		140	180	90	23	430
/330	PESCADER001	08/05/87	7:30	22.2	7.3	3.1	1480	32	122	2.4	7.3	930	360	160	8	1500
/501	PESCADER001	10/15/87	6:30	16.2	7.3	6.3	2570	28	5	6.3		99	194	159	78	530
3047	PESCADER001	01/12/88	6:40	8.9	7.5	7.5	2140	52	20	6.8		380	340	180	29	930
3280	PESCADER001	04/18/88	7:06	16.3	7.3	6.5	1360	23	25	4.7						
3366	PESCADER001	05/09/88	11:46	18.5	8.2	10.0	1250	20	35		4.5	240	210	110	20	580
3503	PESCADER001	07/18/88	13:28	32.5	7.9	7.6	1280	51	50	0000000	5.6	340	180	110	18	650
137	PESCADER002	04/01/87	8:30	16.0	7.4	8.6	1700	16	5	3.8	12020	160	180	100	29	470
331	PESCADER002	08/05/87	8:00	22.4	7.3	5.4	1750	26	121	22/22	9.0	820	450	210	15	1500
502	PESCADER002	10/15/87	7:00	15.3	7.3	4.0	2710	95	5	8.3		110	178	164	97	550
048	PESCADER002	01/12/88	7:00	7.4	7.5	7.5	2180	52	60	7.2		350	260	130	25	770
504	PESCADER002	07/18/88	13:56	34.5	7.7	9.0	1560	44	120		8.7	560	260	130	21	970
138	PESCADER003	04/01/87	9:30	16.5	7.6	4.8	2810	19	15	4.9		110	260	190	96	660
332	PESCADER003	08/05/87	8:30	22.2	7.3	5.9	1770	57			5.9	460	370	230	24	1100
503	PESCADER003	10/15/87	7:30	15.7	7.1	5.4	3160	80	5	7.5		78	190	210	150	630
049	PESCADER003	01/12/88	7:15	6.8	7.5	8.7	2560	33	40	9.2		330	270	140	28	770
282	PESCADER003	04/18/88	7:26	14.8	7.5	7.2	1200	42	80	12.0						
367	PESCADER003	05/09/88	12:03	19.6	8.4	12.0	1370	24	40		4.5	430	220	150	41	840
505	PESCADER003	07/18/88	14:14	32.5	8.1	10.1	1850	27	70		5.9	290	250	180	44	760

Note: Negative values signify reporting limits. Concentration of analyte below reporting limit.

Page 20

Page 21

1

1

1

信は

E

1

ž

1

1

1

# APPENDIX B

THM	DATA	REPORT
11.000	Unin	HLI UHI

2283 3506 7140 7335 7506 3052 3187 3284 3369 507 1035 1645	STA. NAME PESCADER004 PESCADER004 PIERSONPP01 PIERSONPP01 PIERSONPP01 PIERSONPP01 PIERSONPP01 PIERSONPP01 PIERSONPP01 PIERSONPP01 PIERSONPP01 PIERSONPP01	SAMP.DATE 04/18/88 07/18/88 03/25/87 08/06/87 10/16/87 01/12/88 03/08/88 04/18/88 05/09/88 07/18/88	TIME 8:00 14:46 13:45 7:30 6:30 7:00 6:58 6:00	TEMP oC 14.7 30.5 19.5 22.5 15.2 7.4 8.2	PH 7.1 8.1 7.2 7.1 7.2	D0 mg/L 4.1 7.8 8.8 5.8	EC 1 uS/cm T  1400 1890 638	URB .U. 3/ 10	COLOR C.U. 4 80	TOC mg/L ) 16.1	DOC mg/L	CHC13 CH	HBrC12 (	HBr2CI ( ug/L	HBr3	TTHMFI >
AB# 3283 3506 7140 7335 7506 3052 3187 3284 3369 3507 1035 1645	STA. NAME PESCADER004 PESCADER004 PIERSONPP01 PIERSONPP01 PIERSONPP01 PIERSONPP01 PIERSONPP01 PIERSONPP01 PIERSONPP01 PIERSONPP01 PIERSONPP01 PIERSONPP01 PIERSONPP01	SAMP.DATE 04/18/88 07/18/88 03/25/87 08/06/87 10/16/87 01/12/88 03/08/88 04/18/88 05/09/88	8:00 14:46 13:45 7:30 6:30 7:00 6:58 6:00	oC 14.7 30.5 19.5 22.5 15.2 7.4 8.2	7.1 8.1 7.2 7.1 7.2	4.1 7.8 8.8 5.8	US/cm T  1400 1890 638	.U. 3/ 10	C.U. 4 80	mg/L	mg/L 	<		ug/L		>
8283 8506 7140 7335 7506 8052 8187 8284 8369 8507 8035 8645	PESCADER004 PESCADER004 PIERSONPP01 PIERSONPP01 PIERSONPP01 PIERSONPP01 PIERSONPP01 PIERSONPP01 PIERSONPP01 PIERSONPP01 PIERSONPP01 PIERSONPP01	04/18/88 07/18/88 03/25/87 08/06/87 10/16/87 01/12/88 03/08/88 04/18/88 05/09/88	8:00 14:46 13:45 7:30 6:30 7:00 6:58 6:00	14.7 30.5 19.5 22.5 15.2 7.4 8.2	7.1 8.1 7.2 7.1 7.2	4.1 7.8 8.8 5.8	1400 1890 638	34 10	4 80 60	16.0	0					
2283 8506 7140 7335 7506 3052 3187 3284 3369 8507 1035 1645	PESCADERO04 PESCADERO04 PIERSONPP01 PIERSONPP01 PIERSONPP01 PIERSONPP01 PIERSONPP01 PIERSONPP01 PIERSONPP01 PIERSONPP01 PIERSONPP01 PIERSONPP01	04/10/38 07/18/88 03/25/87 08/06/87 10/16/87 01/12/88 03/08/88 04/18/88 05/09/88	14:46 13:45 7:30 6:30 7:00 6:58 6:00	30.5 19.5 22.5 15.2 7.4 8.2	8.1 7.2 7.1 7.2	7.8 8.8 5.8	1890 638	10	100 1 60	10.0					-	
<ul> <li>5000</li> <li>7140</li> <li>7335</li> <li>7506</li> <li>3052</li> <li>3187</li> <li>3284</li> <li>369</li> <li>3507</li> <li>3035</li> <li>1645</li> <li>1645</li> </ul>	PIERSONPPO1 PIERSONPPO1 PIERSONPPO1 PIERSONPPO1 PIERSONPPO1 PIERSONPPO1 PIERSONPPO1 PIERSONPPO1 PIERSONPPO1 PIERSONPPO1	03/25/87 08/06/87 10/16/87 01/12/88 03/08/88 04/18/88 05/09/88	13:45 7:30 6:30 7:00 6:58 6:00	19.5 22.5 15.2 7.4 8.2	7.2 7.1 7.2	8.8 5.8	638	10			67	260	250	140	42	70
7335 7506 3052 3187 3284 3369 3507 4035 1645	PIERSONPPOT PIERSONPPOT PIERSONPPOT PIERSONPPOT PIERSONPPOT PIERSONPPOT PIERSONPPOT PIERSONPPOT PIERSONPPOT	03/23/87 08/06/87 10/16/87 01/12/88 03/08/88 04/18/88 05/09/88	7:30 6:30 7:00 6:58 6:00	22.5 15.2 7.4 8.2	7.1	5.8	030	21	50	18.0	0.7	790	160	17	1	06
7506 3052 3187 3284 3369 3507 3035 1645	PIERSONPPOT PIERSONPPOT PIERSONPPOT PIERSONPPOT PIERSONPPOT PIERSONPPOT PIERSONPPOT	03/08/87 10/16/87 01/12/88 03/08/88 04/18/88 05/09/88	6:30 7:00 6:58 6:00	15.2 7.4 8.2	7.2	J.0	240	20	50	10.0	2 1	500	20	20	-1	30
30052 3187 3284 3369 3507 3035 1645	PIERSONPPOT PIERSONPPOT PIERSONPPOT PIERSONPPOT PIERSONPPOT PIERSONPPOT PIERSONPPOT	01/12/88 03/08/88 04/18/88 05/09/88	7:00 6:58 6:00	7.4	1.2	0.0	240	20	25	0.0	3.1	500	30	20	1	04
3187 3284 3369 3507 3035 1645	PIERSONPPOT PIERSONPPOT PIERSONPPOT PIERSONPPOT PIERSONPPOT PIERSONPPOT	03/08/88 04/18/88 05/09/88	6:58 6:00	8.2	E 7	0.0	000	20	20	24.0		2500	40	2	-1	200
3284 3369 1507 1035 1645	PIERSONPPOT PIERSONPPOT PIERSONPPOT PIERSONPPOT PIERSONPPOT	03/06/88 04/18/88 05/09/88	6:00	0.2	0.1	0.2	620	30	00	12.0		2300	100	0	-1	200
3369 3507 3035 1645	PTERSONPPOT PTERSONPPOT PTERSONPPOT PTERSONPPOT	04/18/88	0:00	14 E	7.1	E /	043	00	00	12.0		2400	100	S	-1	200
1507 1035 1645	PTERSONPPOT PTERSONPPOT PTERSONPPOT	07/19/99	C.07	14.0	7.1	0.4	030	22	00	14.0	10.0	1000	70			170
3507 3035 1645	PTERSONPPOT PTERSONPPOT	11// 13/98	0:0/	10.8	1.4	0.0	403	23	80		10.0	700	12	8	-1	1700
1645	PIERSUNPPUI	07/10/00	5:15	22.1	b.9	4.5	208	40	50		5.5	/00	44	2	-1	15
\$645	DOTHODEOCO	01/03/89	1:33	8.0		9.2	4/6	19	10		10.0	088	51	/	-1	940
	PUTNUUE252	88/10/88	8:51		7.0		100					230	29	3	-1	260
613	PUTNUUE252	08/10/88	8:51	22.0	7.9		193	8	15		2.4	230	31	2	-1	260
642	POTNODE252	08/17/88	8:57		-			-		2.0		2/0	36	6	-1	310
629	POTNODE252	08/17/88	8:57	22.4	7.4		222	1	15		2.2	240	39	6	-1	280
656	POTNODE252	08/24/88	8:40							2.0	-	250	33	5	-1	290
655	POTNODE252	08/24/88	8:40	21.8	7.8		207	7	10		2.5	310	34	3	-1	350
671	POTNODE252	08/31/88	8:45	23.2	8.4				10	2.2	3.0	200	68	29	3	300
672	POTNODE252	08/31/88	8:45	23.2	8.4					2.1		160	60	27	3	250
778	POTNODE252	11/30/88	12:10	10.5	8.0	9.1	252	18	40		4.9	560	62	5	-1	630
792	POTNODE252	12/07/88	9:30	10.3	8.4	9.5	282	13	35		5.1	480	58	17	1	560
820	POTNODE252	12/20/88	9:35	8.6	7.9	10.6	288	7	20		4.1	400	53	13	1	470
847	POTNODE252	12/28/88	10:00	6.9	7.5	11.5	298	8	25		4.1	430	69	13	-1	510
142	PROSPECTPP01	03/25/87	15:00	19.5	7.8	8.0	187	12	5	1.9		950	140	7	-1	1100
336	PROSPECTPP01	08/13/87	8:45	19.4	6.9	4.8	200	19			3.4	640	12	-1	-1	650
507	PROSPECTPP01	10/20/87	9:00	16.0	7.4	4.8	821	52	50	14.0		1100	42	-1	-1	1100
053 I	PROSPECTPP01	01/12/88	8:20	7.1	7.4	8.5	1390	20	100	24.0		1900	74	3	-1	2000
188	PROSPECTPP01	03/08/88	7:59	9.1	7.9		1080	32	100	16.0		1900	67	3	-1	2000
285	PROSPECTPP01	04/18/88	7:38	14.0	7.3	5.3	539	57	80	10.0						
370 1	PROSPECTPP01	05/09/88	7:43	16.9	7.6	7.0	222	72	60		4.2	620	21	-1	-1	640
508 1	PROSPECTPP01	07/18/88	7:47	22.0	7.5	5.3	183	52	50		3.0	370	7	-1	-1	380
141 1	PROSPECTPPO2	03/25/87	15:30	14.5	7.2	4.2	1210	21	60	18.0		440	25	-1	-1	470
145 F	R INDGEPP01	03/26/87	10:45	14.5	7.1	5.1	1550	14	50	16.0		820	300	73	12	1200
338 F	R INDGEPP01	08/07/87	8:30	20.4	6.6	3.9	611	7			21.0	2700	130	5	2	2800
509 F	R INDGEPP01	10/19/87	9:25	17.0	6.7	2.1	933	18	40	14.0		800	240	62	3	1100
582 F	R INDGEPP01	12/10/87	13:56	15.0	6.8	6.3	992	5	100	23.0		1680	242	30	-1	2000
054 F	R INDGEPP01	01/12/88	11:26	9.4	6.7	5.7	890	8	160	24.0		2800	230	25	-1	3100
190 F	R INDGEPP01	03/08/88	12:21	14.4	7.1		1220	18	200	19.0		1200	370	70	4	1600
287 F	R INDGEPP01	04/18/88	9:30	16.5	6.7	0.6	935	15	120	17.0						
371 P	R INDGEPP01	05/09/88	9:39	20.7	7.5	5.8	910	13	160		18.0	2100	360	63	-1	2500
509 P	R INDGEPP01	07/18/88	10:06	23.0	6.7	2.6	748	7	140	19.0	10.00	1700	180	17	-1	1900
144 P	R INDGEPP02	03/26/87	10:00	14.5	7.0	6.7	1180	14	80	21.0		1500	310	65	-1	1900
339 P	R INDGEPP02	08/07/87	9:10	22.2	6.3	3.3	363	9	1000	and the	12.0	1900	84	3	-1	2000
510 P	RINDGEPP02	10/19/87	9:55	17.0	7.1	3.8	595	19	60	13.0		930	140	20	-1	1100
583 P	RINDGEPP02	12/10/87	13:18	13.5	6.2	3.2	739	4	160	31.0		1800	143	11	-1	2000
155 8	RINDGEPP02	01/12/88	11.00	9.2	6.3	4.8	588	6	175	27.0		2000	160	8	-1	2200

Note: Negative values signify reporting limits. Concentration of analyte below reporting limit.

APPENUIX
----------

THM DATA REPORT

and the second

]

1

TR

10 M 0

1

3

1

3

]

												<>	- THMFor	mation Po	tentia	1
				TEMP	pН	DO	EC 1	URB C	OLOR	TOC	DOC	CHC13 CH	BrC12 (	HBr2CI (	CHBr3	TTHMFF
LAB#	STA. NAME	SAMP.DATE	TIME	OC		mg/L	uS/cm T	.U. (	C.U.	mg/L	mg/L	<		ug/L		>
							10000000						94 9 3 / A & A & A & A & A & A & A & A & A & A			
8191	R INDGEPP02	03/08/88	11:53	14.3	7.1		1100	24	120	15.0		1200	380	100	8	1700
8288	R INDGEPP02	04/18/88	10:04	16.5	7.3	8.1	236	15	25	3.	4	Sec.	140000	0.545	12	
8372	R INDGEPP02	05/09/88	10:10	22.5	7.1	1.2	728	10	160		23.0	1600	380	65	-1	200
8510	R INDGEPP02	07/18/88	9:23	22.0	6.7	3.9	870	16	240	8.5	27.0	2000	310	24	-1	230
7143	RIOBLANCOO1	03/26/87	13:15	20.0	8.1	11.6	1160	15	10	6.0		280	230	110	50	67
7340	RIOBLANCOO1	08/07/87	10:15	21.1	7.3	8.6	1290	13			3.5	240	190	160	28	62
7511	R10BLANC001	10/19/87	8:40	16.5	7.5	8.7	1550	27	10	6.0		170	260	200	81	71
7584	R10BLANC001	12/10/87	12:43	15.5	7.4	7.6	1140	8	20	5.5		282	208	104	16	610
8056	RIOBLANCOO1	01/12/88	10:30	9.6	7.3	9.2	2500	17	25	5.1		170	260	190	99	720
3192	RIOBLANCOO1	03/08/88	11:27	14.2	7.5		731	8	35	5.6		690	220	73	3	990
3289	R IOBLANCOO1	04/18/88	8:45	14.5	7.5	7.6	1360	13	40	6.	3					
837 <b>3</b>	R10BLANC001	05/09/88	9:07	20.2	7.6	7.5	647	6	40		5.7	530	160	50	6	750
3511	RIOBLANCOO1	07/18/88	8:42	21.5	7.5	3.4	739	16	40		5.4	450	160	56	2	670
7146	RIOBLANCOO2	03/26/87	13:45	17.0	7.6	4.0	1820	22	15	5.0		260	370	150	49	830
7341	RIOBLANCOO2	08/07/87	9:55	21.2	7.1	4.1	450	14				620	59	8	-1	690
7512	R IOBLANCOO2	10/19/87	8:25	14.5	7.3	6.9	979	20	10	9.7		380	220	93	15	710
7585	RIOBLANCOO2	12/10/87	12:18	16.5	7.4	7.6	1160	13	25	5.8		246	156	81	19	500
3057	R IOBLANCOO2	01/12/88	10:15	9.9	7.3	6.0	880	8	15	4.7		460	190	66	7	720
3193	RIOBLANCOO2	03/08/88	11:15	14.2	7.5		460	14	40	4.9		900	140	19	-1	1100
3290	R IOBLANCOO2	04/18/88	8:39	15.0	7.3	3.9	457	16	40	5.1	7					
3374	R IOBLANCOO2	05/09/88	8:52	19.8	7.6	6.0	377	12	80		6.9	800	64	8	-1	870
3512	R IOBLANCOO2	07/18/88	8:23	21.0	7.5	4.0	784	7	40		5.8	520	180	72	3	780
5004	ROCKSL	01/30/85	10:15	8.0	7.2	10.8	284	3								
5023	ROCKSL	02/27/85	11:45	14.0	7.5	10.3	258	6	25			350	45	5	-1	400
5039	ROCKSL	03/27/85	11:15	12.0	7.4	10.1	269	6								
5052	ROCKSL	04/24/85	11:23	18.0	7.8	10.1	232	7	2			430	42	5	-1	480
5073	ROCKSL	05/22/85	10:20	21.5	8.2	9.2	225	17	15			520	56	11	-1	590
5099	ROCKSL	06/07/85	9:30	23.0	7.9	9.1	252	16								
5089	ROCKSL	06/26/85	10:00	23.0	7.6	8.0	360	19	10			600	110	60	3	770
5104	ROCKSL	07/10/85	9:55	25.0	7.3	7.6	453	8								
5123	ROCKSL	08/28/85	10:45	23.5	7.6	8.1	630	8	10			340	160	100	19	620
134	ROCKSL	09/25/85	10:32	22.5	7.6	8.1	776	8								
149	ROCKSI	10/23/85	10:15	17.5	7.8	10.0	738	7	5			210	210	140	36	600
176	BOCKSL	11/15/85	11:40	12.5	7.5	10.4	988	. 4	0.000					-0-1876-1	1000	
170	BOCKSL	12/03/85	11:25	11.5	7.4	10.5	965	6	10			140	200	210	24	570
011	BOCKSL	01/23/86	11.45	11 0	73	9.6	476	6				1.0		2.0		0.0
016	ROCKSL	02/13/86	10.45	11.5	7 4	10.2	319	13								
027	POCKSL	02/04/86	11.40	17.5	73	6.2	342	16	35			670	67	6	-1	740
042	DOCKSL	03/04/00	12.15	17.0	7.3	8.5	262	11	20			520	81	11	1	610
077	DOCKOL	05/07/06	0.45	17.0	7.5	7 4	202	12	20			510	48	5	1	560
100	DOCKOL	06/04/06	10.40	22 F	7.2	7.6	221	21	20			200	22	0	-1	220
100	DOCKOL	07/09/06	10:40	22.0	7.3	6.2	225	15	20			200	40	2	-1	230
145	RUCKSL	00/14/00	11.00	20.0	1.3	0.3	225	10	20			390	49	4	-1	440
145	RUCKSL	08/14/86	10.05	23.5	7.5	0.1	219	17	20			200	00	10		000
1/5	RUCKSL	09/24/86	10:25	20.0	1.5	8.1	285	1/	5	1.0		300	62	18	-1	380
280	RUCKSL	11/12/86	11:15	14.5	7.3	9.4	180	15	5	1.8		240	14	2	-1	260
311	RUCKSL	12/17/86	7:50	10.0	1.3	9.5	2/2	9	5	1.1		290	59	11	-1	360

Note: Negative values signify reporting limits. Concentration of analyte below reporting limit.

Page 22

THM DATA REPORT

Page	23							THM	DATA I	REPORT						
												<	THMFor	mation P	Potenti	al>
				TEMP	pH	D0	EC	TURB	COLOR	TOC	DOC	CHC13	CHBrC12	CHBr2CI	CHBr3	TTHMFP
LAB#	STA. NAME	SAMP.DATE	TIME	OC		mg/L	uS/cm 1	r.u.	C.U.	mg/L	mg/L	<		ug/L -		>
7020	ROCKSI	01/22/87	7.40	6.5	73	11.8	268	18	10	3.0		480	58	7	-1	550
7060	ROCKSL	02/24/87	7.45	11 0	7 3	10.5	355	12	20	4.0		670	83	22	-1	780
7110	ROCKSI	02/24/87	7.45	13.0	73	10.0	302	12	20	4 3		480	58	5	-1	540
7107	DOCKSL	04/20/97	6.20	10.5	0.0	0.2	314	12	10	2.6		260	54	9		220
7000	DOCKSL	05/20/07	0.30	20.5	7 2	7.2	469	11	10	2.0		200	140	72		520
7294	DOCKSL	06/22/07	0.45	20.5	7.3	2 7 3	100	e ''	10	2.0		520	140	12	-1	550
7402	DOCKSL	00/23/07	10.15	22.5	7 4	0 1	022	11	5	26		100	140	120	44	400
7445	DOCKSL	10/22/07	0.20	10.0	7.4	9.1	923	5	0	2.0		110	100	120	44	270
75.42	DOCKSL	11/05/97	11.15	17.5	7.2	9.0	617	4	5	2.0		200	01	0.4	24	600
7570	DOCKSL	12/08/97	10.45	11.3	7.3	10 1	1140	5	15	2.4		250	100	160	52	650
0014	DOCKSL	01/07/99	11.20	0.0	7.4	12.2	755	10	25	4.2		200	1.40	100	21	540
0004	POCKSL	07/10/00	10.00	12 1	7.9	10.0	205	10	20	4.2		290	01	32	21	240
0140	POCKSL	02/10/00	11.05	12.1	7.0	10.0	711	5	20	4.0		290	120	110	-1	F20
0143	DOCKSL	03/03/00	0.00	15.0	7.5	0.0	670	5	15	1.2		100	120	01	10	330
0200	DOCKOL	04/00/00	10.05	10.0	7.0	9.0	215	12	20	4.2		410	70	20	10	410
0333	DOCKSL	06/14/00	10:05	10.0	7.5	9.2	424	21	25	2.0		200	100	20	4	520
0420	RUCKSL	07/12/00	10:24	25.2	7.0	7.1	404	10	30	2.2		200	110	40	2	430
0500	DOCKOL	00/00/00	10:03	20.0	7.0	7.0	050	10	20	2.2		120	100	100	41	270
2000	RUCKSL	00/09/00	0.50	24.1	7.5	7.3	050	12	20	2.1		140	140	110	41	370
0000	RUCKSL	10/04/00	9:00	10.0	7.4	0.4	900	3	15	2.2		140	140	110	20	440
0/1/	RUCKSL	11/01/00	10:15	17.7	7.4	0.4	1020	6	15	2.5		140	150	100	32	410
014/	RUCKSL	10/12/00	11:10	12.0	7.0	9.0	050	0	10	2.0		120	100	190	01	520
010	RUCKOL CACOD LOWISTA	00/15/00	0.51	20.0	7.0	7.7	300	3	15	3.0		410	270	230	3/	300
090	SACKRIUVISTA	10/12/00	0.00	10.0	7.3	0.1	230	14	10	2.0		270	20	0	-1	300
700	SACRR IUVISTA	10/13/00	0:00	14.2	7.2	0.1	103	12	20	1.0		210	10	10	-1	190
0/02	SACAR IUVISTA	10/06/00	0.20	14.5	7.5	9.1	242	10	20	1.9		420	3/	12	-1	200
0000	SACRA IUVISTA	12/00/00	0:30	10.5	7.1	11.6	204	10	05	3.0		420	17	0	-1	440
1150	SACREIUVISTA	00/14/00	0:00	0.0	1.2	11.0	237	10	25	2.9		100	2/	2	-1	330
0011	SACRETUVISTA	02/14/09	0:00	0.3	0.9	0.0	207	50	100	1.9		16U	10	2	-5	190
231	SACREIUVISTA	04/11/09	10:03	10.0	7.5	0.9	122	10	100	4.7		240	12	3	-1	000
200	SACRETUVISTA	04/11/89	0:40	10.8	7.4	0.2	103	10	15	2.5		280	14	-1	-1	290
400	SACKRIUVISIA	00/09/89	7:30	19.3	7.0	8.5	180	10	10	2.2		190	19	1	-1	210
483	SALKKIUVISTA	07/11/00	7:20	19.3	1.1	8.5	1/3	13	20	3.0	1.0	330	18	2	-1	350
100	SACKKIUVISIA	07/05/00	7:40	21.8	0.9	0.0	104	10	15		1.8	250	15	0	0	2/0
695	SAUKKIUVISIA	07/25/89	/:30	21.0	7.0	1.5	120	3	10			350	14	0	U	360
14/	SHIMAIR	03/26/8/	14:15	20.0	7.8	8.8	/54	6	10	4.8	5.0	360	110	21	-1	490
342	SHIMAIR	08/0//8/	11:05	21.8	1.1	4.4	631	1	15	7.0	5.9	860	89	9	-1	960
513	SHIMAIR	10/19/8/	10:30	17.5	1.3	4.8	559	13	15	7.9		//0	91	10	-1	8/0
588	SHIMAIR	12/10/8/	9:13	14.0	1.3	5./	585	13	40	6.1		513	299	11	-1	820
064	SHIMATR	01/12/88	8:30	9.0	7.3	7.1	/63	20	20	4.9		380	83	23	-1	490
196	SHIMATR	03/08/88	9:05	13.5	7.5	1.7	651	32	30	5.1		530	85	16	1	630
293	SHIMATR	04/18/88	6:33	5.1	7.2	4.2	640	72	40	6.3				-		12202477
377	SHIMATR	05/09/88	6:24	19.2	7.6	4.2	696	11	40		6.5	850	140	27	-1	1000
514	SHIMATR	07/18/88	5:57	23.7	7.3	5.2	577	20	120		13.0	1100	120	6	-1	1200
343	IERMPP01	08/06/87	13:15	24.7	7.0	6.1	472	1			6.5	1300	130	15	-1	1400
514	IERMPP01	10/16/87	11:20	17.8	7.1	7.8	1310	6	35	9.3		320	110	42	16	490
589	IERMPP01	12/10/87	7:10	11.5	6.3	4.5	646	5	140	33.0		2020	97	539	-1	2700

Note: Negative values signify reporting limits. Concentration of analyte below reporting limit.

1 0

The

1

110

1

1

Ĩ

E State

(and the second

-1

(more)

APPENDIX	В	

Page	24	

#### THM DATA REPORT

LAB# S 8065 TE 8197 TE 8294 TE 8294 TE 8291 TE 8291 TE 8291 TE 8378 TE 8515 TE 7344 TE 7515 TE 7344 TE 7590 TE 8066 TE 8198 TE 8295 TE 8379 TE 8379 TE 8379 TE 8379 TE 8379 TE 8663 UJ 8663 UJ 8664 UJ 8067 UP 8067 UP 8067 UP 8080	STA. NAME ERMPP01 ERMPP01 ERMPP01 ERMPP01 ERMPP01 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ERMP02 ER	SAMP.DATE 01/12/88 03/08/88 04/18/88 04/18/88 05/09/88 07/18/88 03/26/87 08/06/87 10/16/87 12/10/87 01/12/88 03/08/88 04/18/88 05/09/88 07/18/88 08/10/88 08/17/88 08/17/88	TIME 7:20 9:45 10:05 10:45 9:34 10:00 7:45 7:45 7:45 9:28 9:36 9:07 9:30 12:01 7:22 7:47	TEMP oC 13.8 10.7 17.0 15.0 21.4 23.5 12.5 23.6 16.7 11.0 9.9 9.8 16.7 18.8 23.0 22.6 20.8	pH 7.2 7.1 7.3 7.1 7.4 6.9 7.2 7.2 7.1 6.9 7.0 7.3 6.9 7.5 7.0 6.7	D0 mg/L 6.5 7.3 7.6 5.0 4.6 4.4 6.5 5.2 7.2 7.0 7.0 7.1 5.0	EC US/cm T 930 889 961 962 910 425 850 587 571 546 786 716 798 719 542	TURB .U. 6 10 11 11 11 8 6 15 80 8 12 12 15	COLOR C.U. 120 140 4 60 4 80 100 120 40 20 100 125 80 2 80	TOC mg/L 25.0 18.0 8.5 8.9 6.3 16.0 25.0 9.9 12 0	DOC mg/L 11.0 10.0 4.8	CHC13 CH 2100 2200 1100 1200 640 770 710 1170 1600 1100	18rC12 C 250 230 390 140 220 170 190 114 250 220	HBr2CI ( ug/L 51 38 120 14 48 45 46 15 31 55	-1 2 7 1 7 -1 2 -1 -1 4	TTHMFP 2400 2500 1600 1400 920 950 1300 1900 1400
LAB# S 3065 TE 8197 TE 8294 TE 8294 TE 8294 TE 8291 TE 8291 TE 8295 TE 8378 TE 8379 TE 8066 TE 8198 TE 8379 TE 8370	STA. NAME FERMPP01 FERMPP01 FERMPP01 FERMPP01 FERMPP01 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMP	01/12/88 03/08/88 04/18/88 04/18/88 05/09/88 07/18/88 03/26/87 08/06/87 10/16/87 12/10/87 01/12/88 03/08/88 04/18/88 05/09/88 07/18/88 08/10/88 08/17/88 08/17/88	7:20 9:45 10:05 10:45 9:34 10:00 7:45 13:30 10:50 7:45 7:45 9:28 9:36 9:30 12:01 7:22 7:47	oC 13.8 10.7 17.0 15.0 21.4 23.5 12.5 23.6 16.7 11.0 9.9 9.8 16.7 18.8 23.0 22.6 20.8	7.2 7.1 7.3 7.1 7.4 6.9 7.2 7.2 7.2 7.1 6.9 7.0 7.3 6.9 7.5 7.0 6.7	mg/L 6.5 7.3 7.6 5.0 4.6 4.4 6.5 5.2 7.2 7.0 7.0 7.1 5.0	US/cm T 930 889 961 962 910 425 850 587 571 546 786 716 798 719 542	.U. 6 10 11 11 11 11 8 6 15 80 8 12 12 15	C.U. 120 140 4 60 100 120 40 20 100 125 80 2 80	mg/L 25.0 18.0 8.5 8.9 6.3 16.0 25.0 9.9 12 0	mg/L 11.0 10.0 4.8	<	250 230 390 140 220 170 190 114 250 220	ug/L 51 38 120 14 48 45 46 15 31 55	-1 2 7 1 7 -1 2 -1 -1 4	2400 2500 1600 1400 920 950 1300 1900 1400
8065       TE         8197       TE         8294       TE         8291       TE         8378       TE         8515       TE         7153       TE         7344       TE         7515       TE         7500       TE         8066       TE         8198       TE         8295       TE         8379       TE         8604       UJ         8663       UJ         8295       TE         8067       UP         8199       UP         8296       UP         8380	TERMPP01 TERMPP01 TERMPP01 TERMPP01 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TER	01/12/88 03/08/88 04/18/88 04/18/88 05/09/88 07/18/88 03/26/87 08/06/87 10/16/87 12/10/87 01/12/88 03/08/88 04/18/88 05/09/88 07/18/88 08/10/88 08/17/88 08/24/88 08/13/87	7:20 9:45 10:05 9:34 10:00 7:45 13:30 10:50 7:45 9:28 9:36 9:30 12:01 7:22 7:47	13.8 10.7 17.0 15.0 21.4 23.5 12.5 23.6 16.7 11.0 9.9 9.8 16.7 18.8 23.0 22.6 20.8	7.2 7.1 7.3 7.1 7.4 6.9 7.2 7.2 7.2 7.1 6.9 7.0 7.3 6.9 7.5 7.0 6.7	6.5 7.3 7.6 5.0 4.6 4.4 6.5 5.2 7.2 7.0 7.0 7.0 7.1 5.0	930 889 961 962 910 425 850 587 571 546 786 716 798 719 542	6 10 11 11 11 8 6 15 80 8 12 12 15	120 140 4 60 100 120 40 20 100 125 80 2 80	25.0 18.0 8.5 8.9 6.3 16.0 25.0 9.9	11.0 10.0 4.8	2100 2200 1100 1200 640 770 710 1170 1600 1100	250 230 390 140 220 170 190 114 250 220	51 38 120 14 48 45 46 15 31 55	-1 2 7 1 7 -1 2 -1 -1 4	2400 2500 1600 1400 920 950 1300 1900 1400
8197         TE           8197         TE           8294         TE           8291         TE           8291         TE           8378         TE           8515         TE           7153         TE           7344         TE           7515         TE           7500         TE           8066         TE           8198         TE           8295         TE           8379         TE           8663         UJ           8663         UJ           8663         UJ           8663         UJ           8663         UJ           8067         UP           8199         UP           8295         UP           8380         UP           8380         UP           8380         UP           8380         UP           8380         UP           8380         UP	ERMPP01 FERMPP01 FERMPP01 FERMPP01 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERMPP02 FERM	03/08/88 04/18/88 04/18/88 05/09/88 07/18/88 03/26/87 08/06/87 10/16/87 12/10/87 01/12/88 03/08/88 04/18/88 04/18/88 08/10/88 08/17/88 08/17/88	9:45 10:05 10:45 9:34 10:00 7:45 13:30 10:50 7:45 9:28 9:36 9:30 12:01 7:22 7:47	10.7 17.0 15.0 21.4 23.5 12.5 23.6 16.7 11.0 9.9 9.8 16.7 18.8 23.0 22.6 20.8	7.1 7.3 7.1 7.4 6.9 7.2 7.2 7.2 7.2 7.1 6.9 7.0 7.3 6.9 7.5 7.0 6.7	7.3 7.6 5.0 4.6 4.4 6.5 5.2 7.2 7.0 7.0 7.1 5.0	889 961 962 910 425 850 587 571 546 786 716 798 719 542	10 11 11 11 11 11 8 6 15 80 8 12 12 15	140 4 60 4 80 100 120 40 20 100 125 80 2 80	18.0 8.9 6.3 16.0 25.0 9.9	11.0 10.0 4.8	1100 2200 1200 640 770 710 1170 1600 1100	230 390 140 220 170 190 114 250 220	38 120 14 48 45 46 15 31 55	2 7 1 7 -1 2 -1 -1 4	2500 1600 1400 920 950 1300 1900 1400
8294         TE           8294         TE           8291         TE           8291         TE           8291         TE           8378         TE           8378         TE           8515         TE           7153         TE           7344         TE           7515         TE           8066         TE           8198         TE           8295         TE           8379         TE           8604         UJ           8663         UJ           8663         UJ           8663         UJ           8663         UJ           8067         UP           8199         UP           8296         UP           8380         UP           8380         UP           8380         UP           8380         UP           8380         UP	rermppo1 rermppo1 rermppo1 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rermppo2 rer	04/18/88 04/18/88 05/09/88 07/18/88 03/26/87 10/16/87 12/10/87 01/12/88 03/08/88 04/18/88 05/09/88 07/18/88 08/10/88 08/17/88 08/17/88 08/13/87	10:05 10:45 9:34 10:00 7:45 13:30 10:50 7:45 7:45 9:28 9:36 9:30 12:01 7:22 7:47	17.0 15.0 21.4 23.5 12.5 23.6 16.7 11.0 9.9 9.8 16.7 18.8 23.0 22.6 20.8	7.3 7.1 7.4 6.9 7.2 7.2 7.1 6.9 7.0 7.3 6.9 7.0 7.3 6.9 7.5 7.0 6.7	7.3 7.6 5.0 4.6 4.4 6.5 5.2 7.2 7.0 7.0 7.1 5.0	961 962 910 425 850 587 571 546 786 716 798 719	11 11 11 11 8 6 15 80 8 12 12 15	4 60 4 80 100 120 40 20 100 125 80 2 80	8.9 8.9 6.3 16.0 25.0 9.9	11.0 10.0 4.8	1100 1200 640 770 710 1170 1600 1100	390 140 220 170 190 114 250 220	120 14 48 45 46 15 31 55	7 1 7 -1 2 -1 -1 4	1600 1400 920 990 950 1300 1900 1400
8291         TE           8291         TE           8378         TE           8378         TE           8515         TE           7153         TE           7344         TE           7515         TE           7500         TE           8066         TE           8198         TE           8295         TE           8379         TE           8604         UJ           8663         UJ           8663         UJ           8663         UJ           8067         UP           8198         TE           8295         TE           8306         UJ           8360         UP           83067         UP           8380         UP           8380         UP           8380         UP           8380         UP	TERMPP01 TERMPP01 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02 TERMPP02	04/18/88 05/09/88 07/18/88 03/26/87 08/06/87 10/16/87 12/10/87 01/12/88 03/08/88 04/18/88 04/18/88 05/09/88 07/18/88 08/10/88 08/17/88 08/24/88 08/13/87	10:45 9:34 10:00 7:45 13:30 10:50 7:45 7:45 9:28 9:36 9:07 9:30 12:01 7:22 7:47	15.0 21.4 23.5 12.5 23.6 16.7 11.0 9.9 9.8 16.7 18.8 23.0 22.6 20.8	7.1 7.4 6.9 7.2 7.2 7.1 6.9 7.0 7.3 6.9 7.5 7.0 6.7	7.6 5.0 4.6 4.4 6.5 5.2 7.2 7.0 7.0 7.1 5.0	962 910 425 850 587 571 546 786 716 798 719	2 1- 11 11 8 6 15 80 8 12 12 15	4 80 100 120 40 20 100 125 80 2 80	8.9 6.3 16.0 25.0 9.9	11.0 10.0 4.8	1100 1200 640 770 710 1170 1600 1100	390 140 220 170 190 114 250 220	120 14 48 45 46 15 31 55	7 1 7 -1 2 -1 -1 4	1600 1400 920 990 950 1300 1900 1400
8378         TE           8378         TE           8378         TE           8515         TE           7153         TE           7344         TE           7515         TE           7590         TE           8066         TE           8198         TE           8295         TE           8379         TE           8636         UJ           8636         UJ           8663         UJ           8663         UJ           8663         UJ           8663         UJ           8663         UJ           8663         UJ           8067         UP           8199         UP           8296         UP           8380         UP           8380         UP           8380         UP	ERMPP01 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 UDNESS IPH01 JONESS IPH01 JONESS IPH01 JONESS IPH02 PEGBERTPP01	05/09/88 07/18/88 03/26/87 08/06/87 10/16/87 12/10/87 01/12/88 03/08/88 04/18/88 05/09/88 07/18/88 08/10/88 08/17/88 08/17/88 08/13/87	9:34 10:00 7:45 13:30 10:50 7:45 7:45 9:28 9:36 9:30 12:01 7:22 7:47	21.4 23.5 12.5 23.6 16.7 11.0 9.9 9.8 16.7 18.8 23.0 22.6 20.8	7.4 6.9 7.2 7.2 7.1 6.9 7.0 7.3 6.9 7.5 7.0 6.7	5.0 4.6 4.4 6.5 5.2 7.2 7.0 7.0 7.1 5.0	910 425 850 587 571 546 786 716 798 719 542	11 11 8 6 15 80 8 12 12 15	100 120 40 20 100 125 80 2 80	8.9 6.3 16.0 25.0 9.9	11.0 10.0 4.8	1100 1200 640 770 710 1170 1600 1100	390 140 220 170 190 114 250 220	120 14 48 45 46 15 31 55	7 1 7 -1 2 -1 -1 4	1600 1400 920 990 950 1300 1900 1400
8515         TE           7153         TE           7344         TE           7515         TE           7590         TE           8066         TE           8198         TE           8295         TE           8379         TE           8379         TE           8604         UJ           8663         UJ           8663         UJ           8663         UJ           8663         UJ           8067         UP           8199         UP           8295         UP           8380         UP           8380         UP           8380         UP           8380         UP	ERMPP01 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 UDNESS IPH01 UDNESS IPH01 UDNESS IPH02 PEGBERTPP01	07/18/88 03/26/87 08/06/87 10/16/87 12/10/87 01/12/88 03/08/88 04/18/88 05/09/88 07/18/88 08/10/88 08/17/88 08/24/88 08/13/87	10:00 7:45 13:30 10:50 7:45 9:28 9:36 9:30 12:01 7:22 7:47	23.5 12.5 23.6 16.7 11.0 9.9 9.8 16.7 18.8 23.0 22.6 20.8	6.9 7.2 7.2 7.1 6.9 7.0 7.3 6.9 7.5 7.0 6.7	4.6 4.4 6.5 5.2 7.2 7.0 7.0 7.0 7.1 5.0	425 850 587 571 546 786 716 798 719 542	11 8 15 80 8 12 12 15	120 40 100 125 80 2 80	8.9 6.3 16.0 25.0 9.9	4.8	1200 640 770 710 1170 1600 1100	140 220 170 190 114 250 220	14 48 45 46 15 31 55	1 7 -1 2 -1 -1 4	1400 920 990 950 1300 1900 1400
7153         TE           7344         TE           7515         TE           7590         TE           8066         TE           8198         TE           8295         TE           8379         TE           8663         UJ           8663         UJ           8663         UJ           8663         UJ           8663         UJ           8067         UP           8199         UP           8295         UP           8306         UP           8307         UP           8307         UP           8307         UP           8307         UP           8307         UP           8307         UP           8300         UP	ERMPPO2 ERMPPO2 ERMPPO2 ERMPPO2 ERMPPO2 ERMPPO2 ERMPPO2 ERMPPO2 ERMPPO2 ERMPPO2 JONESS IPHO1 JONESS IPHO1 JONESS IPHO2 PEGBERTPPO1	03/26/87 08/06/87 10/16/87 12/10/87 01/12/88 03/08/88 04/18/88 05/09/88 07/18/88 08/10/88 08/17/88 08/24/88 08/13/87	7:45 13:30 10:50 7:45 9:28 9:36 9:07 9:30 12:01 7:22 7:47	23.3 12.5 23.6 16.7 11.0 9.9 9.8 16.7 18.8 23.0 22.6 20.8	7.2 7.2 7.1 6.9 7.0 7.3 6.9 7.5 7.0 6.7	4.4 6.5 5.2 7.2 7.0 7.0 7.0 7.1 5.0	850 587 571 546 786 716 798 719 542	8 15 80 8 12 12 15	40 20 100 125 80 2 80	8.9 6.3 16.0 25.0 9.9 12.0	4.8	640 770 710 1170 1600 1100	220 170 190 114 250 220	48 45 46 15 31 55	7 -1 2 -1 -1 4	920 990 950 1300 1900 1400
7344       TE         7344       TE         7515       TE         7590       TE         8066       TE         8198       TE         8295       TE         8379       TE         8516       TE         8663       UJ         8663       UJ         8663       UJ         8663       UP         8067       UP         8199       UP         8296       UP         8380	ERMPPO2 ERMPPO2 ERMPPO2 ERMPPO2 ERMPPO2 ERMPPO2 ERMPPO2 ERMPPO2 ERMPPO2 JONESS IPHO1 JONESS IPHO1 JONESS IPHO2 PEGBERTPPO1	08/06/87 10/16/87 12/10/87 01/12/88 03/08/88 04/18/88 05/09/88 07/18/88 08/10/88 08/10/88 08/17/88 08/24/88 08/13/87	13:30 10:50 7:45 9:28 9:36 9:07 9:30 12:01 7:22 7:47	23.6 16.7 11.0 9.9 9.8 16.7 18.8 23.0 22.6 20.8	7.2 7.1 6.9 7.0 7.3 6.9 7.5 7.0 6.7	6.5 5.2 7.2 7.0 7.0 7.1 5.0	587 571 546 786 716 798 719 542	6 15 80 8 12 12 15	20 100 125 80 2 80	6.3 16.0 25.0 9.9	4.8	770 710 1170 1600 1100	170 190 114 250 220	45 46 15 31 55	-1 2 -1 -1 4	990 950 1300 1900 1400
7515 TE 7590 TE 8066 TE 8198 TE 8295 TE 8379 TE 8516 TE 8604 UJ 8636 UJ 8663 UJ 7345 UP 8067 UP 8067 UP 8199 UP 8380 UP 8380 UP 8380 UP	ERMPPO2 ERMPPO2 ERMPPO2 ERMPPO2 ERMPPO2 ERMPPO2 ERMPPO2 ERMPPO2 JONESS IPHO1 JONESS IPHO1 JONESS IPHO2 PEGBERTPPO1	10/16/87 12/10/87 01/12/88 03/08/88 04/18/88 05/09/88 07/18/88 08/10/88 08/10/88 08/17/88 08/24/88 08/13/87	10:50 7:45 7:45 9:28 9:36 9:07 9:30 12:01 7:22 7:47	16.7 11.0 9.9 9.8 16.7 18.8 23.0 22.6 20.8	7.1 6.9 7.0 7.3 6.9 7.5 7.0 6.7	5.2 7.2 7.0 7.0 7.1 5.0	571 546 786 716 798 719 542	15 80 8 12 12 15	20 100 125 80 2 80	6.3 16.0 25.0 9.9	1.0	710 1170 1600 1100	190 114 250 220	46 15 31 55	2 -1 -1 4	950 1300 1900 1400
7590         TE           8066         TE           8066         TE           8198         TE           8295         TE           8379         TE           8379         TE           8379         TE           8616         TU           8663         UJ           8663         UJ           8663         UJ           8663         UJ           8067         UP           8199         UP           8296         UP           8380         UP           8380         UP           8380         UP           8380         UP	ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 JONESS IPH01 JONESS IPH01 JONESS IPH02 PEGBERTPP01	12/10/87 12/10/87 01/12/88 03/08/88 04/18/88 05/09/88 07/18/88 08/10/88 08/10/88 08/17/88 08/24/88 08/13/87	7:45 7:45 9:28 9:36 9:07 9:30 12:01 7:22 7:47	11.0 9.9 9.8 16.7 18.8 23.0 22.6 20.8	6.9 7.0 7.3 6.9 7.5 7.0 6.7	7.2 7.0 7.0 7.1 5.0	546 786 716 798 719 542	80 8 12 12 15	100 125 80 2 80	16.0 25.0 9.9	1	1170 1600 1100	114 250 220	15 31 55	-1 -1 4	1300 1900 1400
8066         TE           8066         TE           8198         TE           8295         TE           8379         TE           8379         TE           8516         TE           8604         UJ           8663         UJ           8663         UJ           8663         UJ           8663         UP           8067         UP           8199         UP           8296         UP           8380         UP           8380         UP           8379         UP	ERMPP02 ERMPP02 ERMPP02 ERMPP02 ERMPP02 JONESS IPH01 JONESS IPH01 JONESS IPH02 PEGBERTPP01	01/12/88 03/08/88 04/18/88 05/09/88 07/18/88 08/10/88 08/10/88 08/17/88 08/24/88 08/13/87	7:45 9:28 9:36 9:07 9:30 12:01 7:22 7:47	9.9 9.8 16.7 18.8 23.0 22.6 20.8	7.0 7.3 6.9 7.5 7.0 6.7	7.0 7.0 7.1 5.0	786 716 798 719	8 12 12 15	125 80 2 80	25.0 9.9	1	1600 1100	250 220	31 55	-1 4	1900 1400
8198         TE           8198         TE           8295         TE           8379         TE           8379         TE           8516         TE           8604         UJ           8663         UJ           8663         UJ           8663         UJ           8663         UJ           8067         UP           8199         UP           8296         UP           8380         UP           8380         UP           7345         UP	ERMPP02 ERMPP02 ERMPP02 ERMPP02 JONESS IPH01 JONESS IPH01 JONESS IPH02 PEGBERTPP01	03/08/88 04/18/88 05/09/88 07/18/88 08/10/88 08/17/88 08/24/88 08/13/87	9:28 9:36 9:07 9:30 12:01 7:22 7:47	9.8 16.7 18.8 23.0 22.6 20.8	7.3 6.9 7.5 7.0 6.7	7.0 7.1 5.0	716 798 719 542	12 12 12	80	9.9		1100	220	55	4	1400
8295         TE           8295         TE           8379         TE           8516         TE           8604         UJ           8636         UJ           8663         UJ           7345         UP           7516         UP           8067         UP           8296         UP           8380         UP           8380         UP           8380         UP           8380         UP           8380         UP	ERMPP02 ERMPP02 ERMPP02 JONESS IPH01 JONESS IPH01 JONESS IPH02 PEGBERTPP01	04/18/88 05/09/88 07/18/88 08/10/88 08/17/88 08/24/88 08/13/87	9:36 9:07 9:30 12:01 7:22 7:47	16.7 18.8 23.0 22.6 20.8	6.9 7.5 7.0 6.7	7.0 7.1 5.0	798 719 542	12	2 80	12 0		1100	220	55	-	1400
8379         TE           8516         TE           8604         UJ           8663         UJ           8663         UJ           8663         UJ           7345         UP           7516         UP           8067         UP           8199         UP           8380         UP           8380         UP           8380         UP           9380         UP	ERMPP02 ERMPP02 JONESS IPH01 JONESS IPH01 JONESS IPH02 PEGBERTPP01	05/09/88 07/18/88 08/10/88 08/17/88 08/24/88 08/24/88	9:07 9:30 12:01 7:22 7:47	18.8 23.0 22.6 20.8	7.5 7.0 6.7	7.1 5.0	719	15		12.0						
8516         TE           8604         UJ           8636         UJ           8663         UJ           8663         UJ           7345         UP           7516         UP           8067         UP           8199         UP           8296         UP           8380         UP           8380         UP           8380         UP	ERMPP02 JONESS IPH01 JONESS IPH01 JONESS IPH02 PEGBERTPP01	07/18/88 08/10/88 08/17/88 08/24/88 08/13/87	9:30 12:01 7:22 7:47	23.0 22.6 20.8	7.0	5.0	542		100		8.7	1300	280	75	-1	1700
8604         UJ           8636         UJ           8663         UJ           8663         UJ           7345         UP           7516         UP           8067         UP           8199         UP           8296         UP           8380         UP           8380         UP           8517         UP	JONESS IPHO1 JONESS IPHO1 JONESS IPHO2 PEGBERTPPO1	08/10/88 08/17/88 08/24/88 08/13/87	12:01 7:22 7:47	22.6 20.8	6.7		342	11	60		5.1	580	170	48	1	800
8636         UJ           8663         UJ           7345         UP           7516         UP           8067         UP           8199         UP           8296         UP           8380         UP           8380         UP           8380         UP           8380         UP           8380         UP	JONESS I PHO1 JONESS I PHO2 PEGBERTPPO1	08/17/88 08/24/88 08/13/87	7:22 7:47	20.8		2.2	417	4	20		3.1	310	110	35	1	460
8663         UJ           7345         UP           7516         UP           8067         UP           8199         UP           8296         UP           8380         UP           8517         UP	JONESS IPHO2 PEGBERTPPO1	08/24/88 08/13/87	7:47		6.7	1.5	407	2	20		3.2	220	65	26	-1	310
7345 UP 7516 UP 8067 UP 8199 UP 8296 UP 8380 UP 8517 UP 7346 UP	PEGBERTPP01	08/13/87		22.0	7.1	3.0	378	21	60		3.5	400	97	21	-1	520
7516 UP 8067 UP 8199 UP 8296 UP 8380 UP 8380 UP		and the second s	10:40	18.6	7.5	7.3	382	124			6.2	1400	37	2	-1	1400
8067 UP 8199 UP 8296 UP 8380 UP 8517 UP	PEGBERTPP01	10/20/87	10:45	15.7	7.4	1.0	511	96	30	18.0		930	26	1	1	960
8199 UP 8296 UP 8380 UP 8517 UP	PEGBERTPP01	01/12/88	9:45	6.3	7.3	10.1	728	42	50	24.0						
8296 UP 8380 UP 8517 UP	PEGBERTPP01	03/08/88	9:14	10.5	7.9		1160	22	60	11.0		1500	100	8	1	1600
8380 UPI 8517 UPI 7346 UPI	PEGBERTPP01	04/18/88	9:26	15.8	7.8	7.3	704	36	100	10.0						
8517 UP	PEGBERTPP01	05/09/88	9:15	19.9	8.5	10.5	771	21	60		9.3	2000	51	11	-1	2100
7346 LIP	PEGBERTPP01	07/18/88	9:20	23.1	7.5	6.5	344	88	40		5.1	720	33	1	-1	750
1040 011	PEGBERTPP02	08/13/87	11:10	18.3	7.3	7.0	375	100			6.6	980	43	4	-1	1000
7517 UP	PEGBERTPP02	10/20/87	11:00	17.0	7.3	4.9	526	105	60	13.0		648	77	2	-1	730
3068 UP	PEGBERTPP02	01/12/88	10:15	6.3	7.5	10.1	506	68	140	9.7						
3297 UPI	PEGBERTPP02	04/18/88	9:48	15.5	7.2	7.3	637	68	80	8.3						
3381 UPE	PEGBERTPP02	05/09/88	9:35	18.4	7.9	8.8	647	116	40		5.3	800	48	10	-1	860
3518 UPE	PEGBERTPP02	07/18/88	9:55	24.3	7.4	6.5	277	104	25		3.8	500	240	1	-1	740
7347 UPE	PEGBERTPP03	08/13/87	11:30	20.0	7.3	6.6	538	72			9.4	1000	47	2	-1	1000
7518 UPE	PEGBERTPP03	10/20/87	11:25	16.7	7.5	5.9	781	68	25	22.0		1500	53	10	-1	1600
201 UPE	PEGBERTPP03	03/08/88	9:37	7.6	7.5		716	30	60	7.6		1100	60	4	-1	1200
3298 UPE	PEGBERTPP03	04/18/88	10:05	14.0	7.5	5.7	1780	280	60	13.0						
382 UPE	EGBERTPP03	05/09/88	9:53	20.1	8.1	7.6	2240	72	40		16.0	2300	120	23	-1	2400
1519 UPE	EGBERTPP03	07/18/88	10:15	25.9	7.3	4.2	331	128	50		5.6	670	36	1	-1	710
148 UP.	JONESPP01	03/30/87	10:45	17.5	6.8	5.0	1010	35	40	11.0		960	190	27	-1	1200
149 UPJ	JONESPP02	03/30/87	11:15	17.0	7.0	5.4	507	33	200	27.0		2600	160	10	-1	2800
349 UPJ	JONESPP02	08/12/87	8:50	20.4	6.9	3.8	626	29			7.7	1200	160	21	-1	1400
520 UPJ	JONESPP02	10/19/87	12:15	17.5	6.7	4.8	739	30	25	11.0		800	120	24	-1	940
592 UPJ	JONESPP02	12/10/87	8:10	13.5	6.5	4.4	895	24	100	13.0		1350	271	17	5	1600
071 UPJ	0000000	01/12/88	7:30	8.4	6.6	7.0	756	66	80	16.0		1500	220	19	-1	1700
203 UPJ	JUNESPPUZ	03/08/88	7:45	14.1	6.9	6.1	789	48	160			1300	180	25	-1	1500
300 UPJ	JONESPPUZ	04/18/88	12:40	18.4	6.9	2.9	960	20	120	14.0						
384 UPJ	JONESPP02 JONESPP02 JONESPP02		10.00	20.2	7.3	4.0	1120	46	120		10.0	1200	180	45	-1	1400

Note: Negative values signify reporting limits. Concentration of analyte below reporting limit.

The second 3 and and 1 T Constant of the local division of the local 3 3 3 1

1

No.

1

THM DATA REPORT

												<	- THMFor	nation Po	tentia	al>
				TEMP	pН	DO	EC	TURB	COLOR	TOC	DOC	CHC13 C	BrCI2 0	HBr2CI (	CHBr3	TTHMFP
LAB#	STA. NAME	SAMP.DATE	TIME	OC		mg/L	uS/cm	T.U.	C.U.	mg/L	mg/L	<		ug/L		>
0500		07/10/00	10.20	27.0	7.1		000		100		. 1	770	220	10	۰.	1000
0020	UPDUNESPPUZ	07/10/00	11.24	22.2	6.9	2.9	000	00	70		9.1	020	210	40	1	1200
001	UP JONE CDD02	00/10/00	7.45	10 0	6.0	2.0	701	27	140		14.0	1200	210	10	-1	1400
024	UP IONECODO2	00/11/00	0.15	20.6	7.0	27	766	2 20	100		10.0	1200	200	19	-1	1400
0001	UPDUNESPFUZ	00/24/00	7.45	20.0	6.6	5.7	700	20	50		10.0	1200	120	20	-1	500
0704	UPJUNESPPUZ	11/20/00	0.26	11 4	7 1	5.6	710	2 20	20		4.0	420	120	24	3	000
2709	UP INFSPP02	12/07/99	0.20	11.4	7.1	7 3	700	3 20	80		7.5	600	200	17	4	900
95A	LID INVESTOR	12/28/88	9.20	5.0	7.1	10 4	700	64	60		9.9	980	200	47	3	1200
5001	VEDNAL IS	01/20/05	7.50	8.0	7 4	10.4	5 45	22	3 00		5.0	900	200	40	3	1200
5019	VEDNAL IS	02/27/25	8.15	12.5	7 4	0.6	620		25			220	07	10	G	270
5024	VEDNAL IS	02/27/85	8.45	12.0	7 4	9.0	023	1 1	7			220	51	40	0	510
50.49	VERNAL IS	04/24/95	7.45	17.0	7 4	7 0	667	10	5			260	140	61	2	560
5060	VEDNAL IS	05/22/25	7.00	20.5	7.4	7.2	756	21	10			400	140	69	12	640
003	VEDNAL IS	05/20/25	6.45	18.0	77	7.0	130	74 2	0			400	100	00	12	040
5092	VEDNAL IS	06/26/85	6.45	23.0	7.5	7 3	717	52	10			540	160	66	7	770
5100	VEDNAL IS	07/10/95	6.45	22.5	7.4	7 1	490	28	5			520	120	41	2	600
5119	VERNAL IS	08/28/85	7.15	19.5	77	7 4	487	18	5			410	100	34	2	550
5130	VERNAL IS	09/25/85	7.07	21 5	7.4	6.8	563	21	5			380	98	30	4	510
5145	VERNAL IS	10/23/85	7.00	15.5	7.4	7 4	519	12	5			320	110	29	2	460
172	VERNAL IS	11/15/85	8-20	8.5	7.5	9.7	706	7	15			220	130	71	7	430
5166	VERNAL IS	12/03/85	15:30	13.5	7.4	8.9	604	18	18			590	140	32	-1	760
007	VERNAL IS	01/23/86	7:45	12.0	7.5	8.8	790	18	15			930	160	76	7	1200
012	VERNAL IS	02/13/86	7.30	11.5	7.3	9.0	686	15	5			450	140	56	3	650
023	VERNAL IS	03/04/86	8:00	15.0	7.3	8.3	268	26	35			540	56	6	-1	600
038	VERNAL IS	04/09/86	8:00	15.0	7.3	9.2	169	20	25			650	47	4	-1	700
073	VERNAL IS	05/07/86	6:30	14.5	7.3	8.8	257	17	15			330	51	6	-1	390
104	VERNAL IS	06/04/86	7:45	20.5	7.3	8.0	254	22	10			220	41	6	-1	270
122	VERNAL IS	07/02/86	6:50	23.0	7.5	7.9	595	9	5			318	144	41	2	510
141	VERNAL IS	08/14/86	7:15	21.5	7.6	7.6	55	7 25	5				0.005		-	
170	VERNAL IS	09/24/86	7:00	17.5	7.3	8.2	317	20	15			320	85	23	-1	430
276	VERNAL IS	11/12/86	7:45	13.5	7.3	9.7	447	10	5	2.0		250	60	41	1	350
307	VERNAL IS	12/17/86	11:30	11.5	7.3	10.5	331	10	5		1.4	160	38	9	-1	210
016	VERNAL IS	01/22/87	11:20	8.5	7.3	11.1	679	10	5		2.5	220	85	41	4	350
056	VERNAL IS	02/24/87	11:15	11.5	7.5	9.9	868	12	5	2.7		310	200	120	9	640
105	VERNAL IS	03/24/87	10:45	13.0	7.3	9.6	831	16	5	3.8		320	140	38	8	510
182	VERNAL IS	04/30/87	9:45	19.0	7.3	8.4	564	27	10	2.6		200	90	40	4	330
217	VERNAL IS	05/28/87	6:45	18.0	7.4	8.2	622	25	15	2.6		410	130	53	-1	590
280	VERNAL IS	06/23/87	7:15	22.5	7.7	4.6	807	42	10	2.2		250	110	61	9	430
279	VERNAL IS	06/23/87	7:15	22.5	7.7	4.6	807	42	10		4.6	400	170	64	9	640
292	VERNAL IS	06/24/87	8:30	23.0	7.5	1.9				2.9		260	150	78	14	500
373	VERNALIS	08/25/87	7:05	22.1	7.4	7.7						370	130	63	4	570
396	VERNAL IS	09/09/87	7:00	21.5	6.8	7.2	734	21	5	5.5		310	110	50	11	480
398	VERNAL IS	09/09/87	7:00								4.0	240	120	55	4	420
439	VERNAL IS	10/22/87	6:50	18.5	7.4	8.2	807	13	0	3.3		170	98	62	13	340
440	VERNAL IS	10/22/87	6:50								3.5	140	89	62	17	310
520	VERNAL IS	11/05/87	7.20	15.0	7.6	8.7	951	17	5	4.2		400	130	78	6	610

Note: Negative values signify reporting limits. Concentration of analyte below reporting limit.

1

(Internet

1

1

1

State of

and the second s

Contraction of the local distribution of the

C

Page 25

1

1

1

3

1

1

]

]

]

1

(internet

Page	26	THM DATA REPORT														
		SAMP.DATE	TIME									< THMFormation Potential>				
LAB#				TEMP oC	рH	DO mg/L	EC uS/cm	TURB T.U.	COLOR C.U.	TOC mg/L	DOC mg/L	CHC13	CHBrC12	CHBr 2CI	CHBr3	TTHMFP >
	STA. NAME											<		- ug/L		
7538	VERNAL IS	11/05/87	7:20								3.7	360	120	80	8	570
7566	VERNAL IS	12/08/87	8:00	13.6	7.4	9.4	974	12	10	2.6		170	) 70	39	11	290
7565	VERNAL IS	12/08/87	8:00								4.9	410	190	85	10	700
8009	VERNAL IS	01/07/88	8:05								3.9	280	160	87	9	540
8010	VERNAL IS	01/07/88	8:05	10.3	7.4	11.1	1080	11	15	4.0		280	150	100	12	540
8090	VERNAL IS	02/10/88	7:30	12.4	7.4	9.8	1320	16	20	4.1		440	130	88	19	680
8089	VERNAL IS	02/10/88	7:30								7.1	320	170	110	14	610
8144	VERNAL IS	03/15/88	7:45	12.3	7.6	10.0	800	19	20	3.0		220	83	61	5	370
8145	VERNAL IS	03/15/88	7:45								2.4	250	140	48	5	440
8234	VERNAL IS	04/05/88	6:40								3.4	260	110	58	8	440
8233	VERNAL IS	04/05/88	6:40	14.3	7.5	4.3	801	14	20	3.2		310	110	59	9	490
8329	VERNAL IS	05/03/88	7:11								2.8	170	120	81	15	390
8328	VERNAL IS	05/03/88	7:11	16.6	7.8	8.7	802	18	15	2.8		270	110	68	23	470
8420	VERNAL IS	06/14/88	6:35	21.6	7.7	8.3	738	21	25	2.6		290	140	72	8	510
8421	VERNAL IS	06/14/88	6:35								5.4	220	120	64	8	410
8455	VERNAL IS	07/12/88	6:18	22.0	7.8	7.7			35	3.1		470	140	77	9	700
8456	VERNAL IS	07/12/88	6:18								3.2	320	120	77	12	530
8577	VERNAL IS	08/09/88	8:00	20.8	7.2	8.2			20	3.1		400	170	50	7	630
8578	VERNAL IS	08/09/88	8:00	20.8	7.2	8.2					3.5	280	120	70	7	480
8689	VERNAL IS	09/06/88	6:45	22.2	7.7	6.9					3.1	240	140	57	19	460
8681	VERNAL IS	09/06/88	6:45	22.2	7.7	6.9	896	24	25	3.2		330	150	55	15	550
8710	VERNAL IS	10/04/88	6:58	18.1	8.0	8.0	911	15	20	3.3		210	120	55	22	410
8711	VERNAL IS	10/04/88	6:58	18.1	8.0	8.0	911				6.5	270	190	75	9	540
8741	VERNAL IS	11/01/88	8:15	15.3	7.3	8.9					2.8	110	84	58	10	260
8740	VERNAL IS	11/01/88	8:15	15.3	7.3	8.9	857	17	15	3.3		160	91	57	14	320
8811	VERNAL IS	12/13/88	8.25	10.2	72	10.0	269	10	20	4 2		300	140	70	7	530

Note: Negative values signify reporting limits. Concentration of analyte below reporting limit.

# Appendix C

#### QUALITY ASSURANCE EVALUATION OF LABORATORIES PERFORMING ANALYSIS FOR THE DELTA AGRICULTURAL DRAINAGE INVESTIGATION PROGRAM

The performance of Clayton Environmental Consultants and Enseco, Inc. were evaluated for the period January, 1987 through July, 1989. Several parameters were used as a yardstick to evaluate performance including blind sample results, spiked matrix results, interlaboratory comparisons, and adherence to the standard methods for analyzing volatile organic hydrocarbons. This evaluation focuses on the analytical capabilities for THMFP and pesticides, although the laboratories also analyzed minerals and trace elements. The following is an assessment of each of these procedures:

#### **BLIND SAMPLES**

Blind samples were analyzed to help measure the variation induced by sampling procedures, as well as laboratory variability. Approximately one set of THMFP blind samples per batch were submitted to the laboratories (there were no pesticide blind samples). Table C-1 presents the results of the blind sample analyses for THMFP and CHCl₃. The relative percent difference was determined to assess the precision of blind duplicate measurements using the formula:

Relative Percent Difference =  $\frac{\text{Conc.1} - \text{Conc.2}}{\text{average}} \times 100$ 

The quality control limit for estimating the precision of each of the THMs is <22%. All the blind duplicate results fell inside control limit.

Also presented in Table C-1 are the holding times for the blind duplicate samples. Holding time refers to the period after the samples have been both spiked and quenched. Theoretically, if the sample is held beyond the holding time, there could be loss of the volatiles. The holding time required by EPA in all the standard methods for analyzing volatile organic hydrocarbons is 14 days. Data shows that one set of blind duplicates was held 18 days before being analyzed.

The total data base for the 2-1/2 year period of study was also examined to determine the holding times of the THM samples (other than the duplicates). Samples sent to Enseco Laboratories were first spiked, incubated, and quenched by DWR Bryte Lab, so exact holding times could be calculated. However, THM samples sent to Clayton Environmental Consultants were generally spiked, incubated and quenched at Clayton, and dates of these procedures could not be obtained from Clayton.

Table C-2 lists the holding times of the THMFP samples. Since exact holding time data was unavailable from Clayton Labs, "worst case" holding times were estimated by subtracting the 7 day incubation period from the time between the receipt and analysis of samples (except for cases where DWR Bryte Lab spiked and quenched). Clayton Environmental Consultants may have held as many as 101 samples for up

to 21 days (i.e. 7 days beyond the specified holding period, worst case). Enseco Laboratories exceeded the holding period for 289 samples, holding some of them for up to 49 days (i.e. 35 days beyond the specified holding period).

Both Clayton and Enseco Laboratories was contacted about the excessive holding times. Enseco agreed to perform a degradation study to determine the usefulness of the THMFP data where holding times exceeded 14 days. The study was conducted using both Enseco, Inc. and DWR Bryte Labs. The study showed that THMs may be held up to 80 days before there is significant loss of sample. A description of this study and the results are presented in Appendix D.

Holding times for pesticide analyses were not available from either Enseco or Clayton. This deficiency will be corrected in future years. There was only one problem reported by Enseco where Dinoseb was destroyed by the hydrolysis step using the EPA Method 615. The samples had to be re-extracted and analyzed without the hydrolysis step and consequently holding times were missed due to the need for re-extraction and analysis.

#### SPIKED MATRIX SAMPLES

Spiked duplicate samples were performed by the laboratories to check on internal quality control procedures to help assess laboratory variability. Method blanks were also run to assess the degree to which laboratory operations and procedures cause false-positive analytical results for the samples. Method blanks can give information about background concentrations of the constituent in question.

The spiked duplicates were run once per batch analyzed. Spikes were performed on two matrices: one supplied by Central District (field matrix) and one generated by the laboratories (blank water). The results of the spiked duplicate analyses are shown in Table C-3 for THMFP: chloroform, bromodichloromethane, dibromochloromethane and bromoform. The percent accuracy and precision obtained for the spiked matrix analyses, as well as the range of acceptable control limits, are shown. For THMFP, the acceptable control limits for accuracy should range between 80-125% and for precision the control limit should be <22%.

The pound (#) or asterisk (*) values in Table C-3 identify sample recoveries outside standard control limits for accuracy or precision, respectively. The instances where recoveries fell outside of control limits are very few. However, when this occurs, the laboratory should re-analyze the samples and follow procedures to obtain acceptable control limits. If the spiked matrix results indicate that the laboratory was out of control, the sample results during this period may need to be re-examined.

Table C-4 shows the results of the spiked matrix analyses for pesticides for Clayton Environmental Consultants and Enseco, Inc. The acceptable control limits for pesticides varies and are dependent on the compound analyzed and the analytical method. The tagged values mark those results which fell outside quality control limits.
## INTERLABORATORY COMPARISONS

A round robin laboratory study was conducted January 20, 1988. Table C-5 shows the THMFP results the study. Participating laboratories included the DWR Bryte Laboratory, East Bay Municipal Utility District, Clayton Environmental Consultants, Department of Health Services, and Cal Analytical (Enseco, Inc.). All laboratory results fell within the control limits for accuracy (80-125%). This assumes that the true mean is the same as the mean of the replicates. None of the replicate measurements exceeded the control limit for precision (<22%).

## TABLE C-1 - BLIND SAMPLE QUALITY ASSURANCE RESULTS (January 1987 through June 1989)

1

1

1

No.

1

8

Citte in

Ĩ

1

3

1

3

Station Location	Date Sampled	CHCL3 g/L	THMFP g/L	RPD C	CHCL3	RPD	THMFP %	Control Limit %	Holding Time (days)
Bouldin1	1/26/89	1400	1600		0		0	22	6
Bouldin1	1/26/89	1400	1600						
Bouldin1	2/3/89	1340	1600		5		5	22	3
Bouldin1	2/3/89	1100	1300						
Bouldin2	8/24/88	3600	3700		3		2	22	2
Bouldin2	8/24/88	3200	3400						
Bouldsiph01	8/31/88	280	300	. 3	-1		-1	22	5
Boulds iph01	8/31/88	290	310						
Upeqbert01	3/8/88	1500	1600	3	6		5	22	18
Upegbert01	3/8/88	1200	1300						
Up jonespp01	3/30/87	960	1200		16		13	NC	10
Up jonespp01	3/30/87	1900	2100						
Up jonespp02	12/28/88	980	1200		3		2	22	13
Up ionespp02	12/28/88	1100	1300						

NC = Not Calculated by laboratory.

#### CLAYTON ENVIRONMENTAL CONSULTANTS

		0.00150	HOLDING
DWR	SAMPLES	SAMPLES	ITME
SAMPLE NO.	RECEIVED	ANALYZED	(DAYS)
	Holding	Times: 0 - 14 Days	
7239	06/08/87	06/08/87	0
7255-7256	06/08/87	06/08/87	0
7061-7066	03/03/87	03/13/87	3
7295-7298	07/07/87	07/17/87	3
7169-7179	04/16/87	04/28/87	5
7229-7232	06/02/87	06/15/87	6
7052-7060	02/24/87	03/10/87	7
7198-7203	05/13/87	05/27/87	7
7206-7207	05/28/87	06/11/87	7
7216-7223	05/28/87	06/11/87	7
7227-7228	05/28/87	06/11/87	7
7242-7254	06/11/87	06/25/87	7
7279-7284	06/23/87	07/08/87	8
7001-7005	01/08/87	01/24/87	9
7181-7193	04/30/87	05/18/87	12
7204-7205	05/20/87	06/09/87	13
7209-7214	05/20/87	06/09/87	13
7233-7238	06/04/87	06/24/87	13
7140-7157	03/30/87	04/20/87	14
7196-7197	05/06/87	05/27/87	14

#### Holding Times: 15 - 21 Days

15
15
16
17
18
18
19
21
21

¹ Holding times for Clayton calculated as "worst case" times; actual holding times could be shorter. Holding time estimated as: (date analyzed - date received) - 7 days.

1

1

1

(Contraction)

ī

3

3

]

3

1

#### ENSECO LABORATORIES

DWR BATCH NO.	SAMPLES RECEIVED	SAMPLES ANALYZED	HOLDING TIME (DAYS)
	Holding Ti	mes: 1 - 14 D	ays
9117-9129	02/13/89	02/13/89	(
9151-9158	02/23/89	02/23/89	(
9253-9254	04/14/89	04/14/89	(
8577-8585	08/18/88	08/19/88	
8586-8593	08/24/88	08/25/88	1
8845-8858	01/17/89	01/18/89	1
9186-9193	03/08/89	03/09/89	1
9239-9245	04/06/89	04/07/89	1
8429-8436	06/30/88	07/01/83	2
8441-8443	07/12/88	07/13/88	1
8649-8664	09/07/88	09/09/88	2
9052-9058	03/06/89	03/08/89	1
9096-9103	02/08/89	02/10/89	1
9137-9144	02/15/89	02/17/89	2
9726-9233	03/21/89	03/23/89	1
8412-8419	06/21/88	06/24/88	
8455-8471	07/22/88	07/25/88	
8598-8614	08/22/88	08/25/88	
8644-8645	08/22/88	08/25/88	:
8690-8697	09/23/88	09/26/88	:
8698-8705	10/03/88	10/06/88	
8719-8726	10/24/88	10/27/88	3
9104-9116	02/06/89	02/09/89	3
9130-9136	02/15/89	02/18/89	3
8448-8454	07/14/88	07/18/88	4
8527-8529	07/22/88	07/26/88	4
8710-8718	10/13/88	10/17/88	4
8775-8788	12/12/88	12/16/88	
8570-8576	08/11/88	08/16/88	1
8665-8680	09/15/88	09/20/88	
8681-8689	09/16/88	09/21/88	1
9211-9217	03/15/89	03/20/89	1
9218-9219	03/16/89	03/21/89	1
7439-7446	11/03/87	11/09/87	(
7468-7469	10/27/87	11/02/87	1
8803-8808	12/15/88	12/21/88	1
9220-9225	03/15/89	03/21/89	1
7428-7438	10/27/87	11/03/87	

Contraction of the local distribution of the

Sec. 19

Contra la

Citizan de

Contraction of the local division of the loc

-

1

1

a second

and the second

Concession of the local distance of the loca

1

## ENSECO LABORATORIES (cont.)

DWR BATCH NO.		SAMPLES Received	SAMPLES ANALYZED	HO T (D	LDING IME AYS)
	Holding	Times:	1 -14 Day	s (continued)	
8420-8428		06/23/88	06/30/88		7
8541-8563		08/01/88	08/08/88		7
8757-8764		11/29/88	12/05/88		7
8818-8831		12/29/88	01/04/89		7
8472-8522		08/03/88	08/11/88		8
8740-8747		11/10/88	11/18/88		8
8397-8403		06/07/88	06/16/88		9
9351-9373		06/28/89	07/07/89		9
9374-9399		06/29/89	07/08/89		9
8749-8756		10/18/88	10/28/88		10
9439-9477		06/27/89	07/07/89		10
7299-7352		08/17/87	08/28/87		11
7529-7544		11/16/87	11/27/87		11
8620-8643		08/29/88	09/09/88		11
8789-8802		12/16/88	12/27/88		11
7373-7386		09/03/87	09/15/87		12
7387-7395		09/11/87	09/23/87		12
8320-8327		05/09/88	05/21/88		12
9001-9051		01/20/89	02/01/89		12
8233-8240		04/13/88	04/26/88		13
8245-8251		04/25/88	05/08/88		13
8727-8734		10/28/88	11/10/88		13
7470-7526		11/03/87	11/06/87	11/17/87	3-14
7404-7426		10/02/87	10/16/87		14
8809-8810		12/15/88	12/29/88		14

# Holding Times: 15 - 21 Days

7565-7571	12/22/87	01/08/88	17
8336-8384	05/23/88	06/10/88	18
8208-8216	03/25/88	04/13/88	19
8389-8396	05/27/88	06/15/88	19

# Holding Times: 22 - 28 Days

7572-7592	12/21/87	01/12/88	22
7554-7564	12/14/87	01/06/88	23
8144-8150	03/23/88	04/18/88	26

The second

1

and the second

Contraction of the local division of the loc

1

Summer of the local division of the local di

and the

3

1

1

# ENSECO LABORATORIES (cont.)

				HOLDING
DWR		SAMPLES	SAMPLES	TIME
BATCH	NO.	<b>RECEIVED</b>	ANALYZED	(DAYS)

# Holding Times: 22 - 28 Days (continued)

7447-7456	11/09/87	11/24/87	12/06/87	15-27
8328-8335	05/12/88	06/08/88		27

## Holding Times: 29 - 35 Days

7596-7603	12/22/87	01/20/88		29
8151-8203	03/21/88	04/06/88	04/20/88	16-30
7604-7611	12/28/87	01/27/88		30
8130-8137	03/02/88	04/02/88		31
8221-8228	04/01/88	05/02/88		31
8108-8115	02/29/88	04/01/88		32

#### Holding Times: 36 - 42 Days

8089-8095	02/18/88	03/26/88		37
8001-8015	01/15/88	02/02/88	03/02/88	18-47
8017-8071	02/02/88	03/08/88	03/18/88	35-45

## Holding Times: 43 - 49 Days

8072-8079	02/03/88	03/23/88	49

## TABLE C-3 - RESULTS OF SPIKED MATRIX SAMPLES (January 1987 through June 1989)

#### ENSECO LABORATORIES

1

0

1

1

3

ä

1

DWR	Samples	Analyte	Spiked	Concen	tration	A	ccuracy	(%)	RPD	Limit
Batch No.	Rece i ved		Amount	LCS1	LCS2	LCS1	LCS2	Limits		
7299-7352		08/17/87	Not Fou	nd.						
7373-7386	09/03/87	CHCI2	5.0	4.7	5.5	94	110	83-123	12	26
		CHCIBr	5.0	4.5	5.5	90	110	82-126	20	30
		Matrix: Water								
7387-7395	09/11/87	CHCI	5.0	4.9	4.9	98	98	83-123	0	21
		CHCIZBr	5.0	4.6	4.8	92	96	82-126	4.3	30
		Matrīx: Water								
7404-7426	10/02/87	CHCI3	5.0	4.9	4.7					
		CHCI_Br	5.0	5.1	5.2					
		Matrīx: Water								
7428-7438	10/27/87	CHCI3	5.0	5.4	5.2	108	104	84-122	3.8	22
		CHC I 2Br	5.0	5.6	5.1	112	102	81-129	9.4	27
		Matrīx: Water								
7439-7446	11/03/87	CHCI3	5.0	4.2	4.6	84	92	84-122	9	22
		CHCIZBr	5.0	4.4	5.2	88	104	81-129	17	27
		Matrīx: Water								
7447-7456	11/09/87	CHCI3	5.0	4.9	5.0	98	100	84-122	2	22
		CHCIZBr	5.0	5.0	5.1	100	102	81-129	2	27
		Matrīx: Water								
7468-7469	10/27/87	Not Found.								
7470-7526	11/03/87	Not Found								
7520 7544	11/16/97	CHCI	5.0	5 1	5 2	102	104	84-122	2	22
525-7544	11/10/07	CHCI Br	5.0	5.3	5.3	102	106	81-129	0	27
14		Matrix: Water	0.0	0.0	0.0	100				-
545-7553	11/24/87	CHCI	5.0	4.6	5.1	92	102	84-122	10.3	22
		CHCI	5.0	5.1	4.5	102	90	81-129	12.5	27
		Matrix: Water								
7554-7564	12/14/87	CHCI	5.0	4.7	4.7	94	94	84-122	0	22
		CHC 12Br	5.0	4.8	4.9	96	98	81-129	0	27
		Matrix: Water								
7565-7571	12/22/87	CHCI	5.0	5.0	5.6	100	112	84-122	11	22
		CHCIBr	5.0	5.0	5.7	100	114	81-129	13	27
		Matrix: Water								

DWR Batch No.	Samples Received	Analyte	Spiked Amount	Concent LCS1	tration LCS2	LCS1	CCULACY	(%) Limits	RPD	Limit
7572-7592	12/21/87	Not Found.								
7596-7603	12/22/87	CHCI3 CHCI2Br Matrix: Water	2.5 5.0	2.2 4.9	2.6 4.7	88 98	104 94	NC 81-129	0 4.2	NC 27
7604–7611	12/28/87	CHCI3 CHCI2Br Matrix: Water	2.5 5.0	2.35 4.51	2.14 4.34	94 90	86 87	83-124 78-132	8.9 3.4	18 21
8001-8015	01/15/88	CHCI3 CHCI2Br Matrix: Water	2.5 5.0	2.2 4.9	2.6 4.7	88 98	104 94	83-124 78-132	17 4.2	18 21
8017-8071	02/02/88	No THM's Done								
8072-8079	02/03/88	CHCI3 CHCI2Br Matrix: Water	2.5 5.0	2.56 4.79	2.27 4.06	102 96	91 81	83-124 78-132	11 17	18 21
8089-8095	02/18/88	CHCI3 CHCI2Br Matrix: Water	2.5 5.0	2.52 2.37	2.42 4.92	101 107	97 98	83-124 78-132	4.0 8.8	18 21
8108-8115	02/29/88	CHCI3 CHCI3Br CHCIBr2 CHBr3 Matrix: Aqueou	2.5 5.0 5.0 10 s	2.82 5.04 5.12 11.3	2.98 6.10 6.12 14.6	113 101 102 113	119 122 122 146	83-124 78-132 NC NC	5.1 19 18 25	18 21 NC NC
8130–8137	03/02/88	CHCI3 CHCI3Br CHCIBr2 CHBr3 Matrix: Aqueou (# = Recovery o	2.5 5.0 5.0 10.0 s utside s	2.82 5.04 5.12 11.3	2.98 6.10 6.12 14.6 QC limits.	113 101 102 113 * = F	119 122 122 146#	80-125 80-125 80-125 80-125 80-125 ide QC limi	5.2 19.0 18.0 25.0*	22 22 22 22
8144–8150	03/23/88	CHCI3 CHCI2Br CHCIBr2 CHBr3 Matrix: Aqueous (# = Recovery o	2.50 5.00 5.00 10 s utside s	2.82 5.04 5.12 11.3	2.98 6.10 6.12 14.6 QC limits,	113 101 102 113 * = R	119 122 122 146# PD outs	80-125 80-125 80-125 80-125 80-125 ide QC limi	5.2 19.0 18.0 25.0* ts.)	22 22 22 22 22
8151-8203	03/21/88	No THM's Done								

and and

行行

1

3

]

Analyte RPD Limit DWR Samples Spiked Concentration Accuracy (%) Amount LCS1 LCS2 LCS1 LCS2 Limits Batch No. Received CHCI3 CHCI2Br 8208-8216 03/25/88 2.5 2.63 2.57 105 103 80-125 1.9 22 5.00 4.48 4.54 90 91 80-125 1.1 22 CHC IBr 2 5.00 4.90 80-125 2.0 22 4.99 100 98 CHBr₃² Matrix: Aqueous 9.84 101 98 3.0 22 10.0 10.1 80-125 CHCI3 CHCI2Br 2.50 2.69 95 108 80-125 13.0 22 8221-8228 04/01/88 2.38 80-125 22 5.00 4.35 4.87 87 97 11.0 CHCIBr₂ CHBr₃ Matrix: Aqueous 22 5.25 80-125 19.0 5.00 4.37 87 105 102 80-125 16.0 22 10.0 8.73 10.2 87 CHCI3 CHCI2Br 8233-8240 04/13/88 500 744 789 NC 1000 1090 1180 CHCIBr2 CHBr3 Matrix: Aqueous 1000 NC NC NC NC NC 1170 1210 NC NC 2000 2170 2090 NC NC NC CHCI3 CHCI2Br 80-125 4.8 22 8245-8251 04/25/88 2.50 2.64 2.53 106 101 5.00 4.68 4.41 94 88 80-125 6.6 22 CHC IBr 2 80-125 8.2 22 5.00 5.06 4.67 101 93 CHBr₃² Matrix: Aqueous 80-125 2.0 22 10.0 9.94 10.1 99 101 CHCI3 CHCI2Br 8320-8327 05/09/88 5.00 5.20 5.25 104 105 80-125 1.0 22 5.00 5.45 103 109 80-125 5.7 22 5.14 CHC IBr 2 100 22 5.00 4.62 5.01 92 80-125 8.3 CHBr₃⁴ Matrix: Aqueous 10.0 8.29 9.62 83 96 80-125 14.0 22 CHCI3 CHCI2Br CHCIBr2 1.0 22 8328-8335 05/12/88 5.00 5.12 5.04 102 101 80-125 103 80-125 0.0 22 5.00 5.17 5.14 103 22 5.00 5.53 5.23 111 105 80-125 5.6 CHBr₃² Matrix: Aqueous 10.0 10.8 10.6 108 106 80-125 1.9 22 CHCI3 CHCI2Br 8336-8384 05/23/88 5.00 5.12 5.04 102 101 80-125 1.0 22 5.00 5.17 5.14 103 103 80-125 0.0 22 CHCIBr2 CHBr3 Matrix: Aqueous 22 5.53 5.23 105 80-125 5.6 5.00 111 80-125 10.0 10.8 10.6 108 1.9 22 106

TABLE C-3 - (CONTINUED)

DWR	Samples	Analyte	Spiked	Concent	tration	A	ccuracy	(%)	RPD	Limit
Batch No.	Received		Amount	LCS1	LCS2	LCS1	LCS2	Limits		
-										
8389-8396	05/27/88	CHCI	5.00	5.12	5.4	102	101	80-125	1.0	22
		CHCISBr	5.00	5.17	5.14	103	103	80-125	0.0	22
		CHC IBr	5.00	5.53	5.23	111	105	80-125	5.6	22
		CHBr, -	10.0	10.8	10.6	108	106	80-125	1.9	22
		Matrix: Aqueo	US							
8397-8403	06/07/88	CHCI	5.00	5.12	5.4	102	101	80-125	1.0	22
0001 0100	00/01/00	CHCI Br	5.00	5.17	5.14	103	103	80-125	0.0	22
		CHCIEr	5.00	5 53	5 23	111	105	80-125	5.6	22
		CHBr 2	10 0	10.8	10.6	108	106	80-125	1 9	22
		Matrix: Aqueo	us	10.0	10.0	100	100	00 120	1.0	
0410 0410	06/01/00		5.00	4 50	4 41	02	00	90 125		22
8412-8419	00/21/88	CHCI 3	5.00	4.09	4.41	92	00	00-120	4.4	22
			5.00	4.01	4.21	90	01	00-125	1.1	22
		CHUBE 2	5.00	4.00	4.04	92	91	80-125	1.1	22
		UHBr 3	10.0	11.3	11.0	113	110	80-125	2.1	22
		Matrix: Aqueo	us							
8420-8428	06/23/88	CHCI	2.50	2.47	2.51	99	100	80-125	1.0	22
214/02/02/02/02/02/02/02/02/02/02/02/02/02/		CHCI_Br	5.00	4.86	4.79	97	96	80-125	1.0	22
		CHCIBr	5.00	3.97	4.04	79#	81	80-125	2.5	22
		CHBr 2	10.0	8.89	7.85	89	78#	80-125	13.0	22
		Matrix: Aqueo	US							
		(# = Recovery	outside	standard	QC limit	s.)				
8429-8436	06/30/88	CHCI	2.50	2.47	2.51	99	100	80-125	1.0	22
		CHCISBr	5.00	4.86	4.79	97	96	80-125	1.0	22
		CHC IBr	5.00	3.97	4.04	79#	81	80-125	2.5	22
		CHBr 2	10.0	8.89	7.85	89	78#	80-125	13.0	22
		Matrix: Aqueou	JS							
		(# = Recovery	outside :	standard	QC limit	s.)				
8441-8443	07/12/88	CHCL	5.00	4.59	4.41	92	88	80-125	4.4	22
0111-0110	017 12 00	CHCL Br	5.00	4.51	4.27	90	85	80-125	5.7	22
		CHCIRC	5.00	4.60	4.54	92	91	80-125	1.1	22
		CHBr 2	10.0	11.3	11.0	113	110	80-125	2.7	22
		Matrix: Aqueo	us							
	07.01.0	0101	E 00	4 50	4.41	02	99	80_125	4 4	22
8448-8454	07/14/88	CHU 3	5.00	4.09	4.41	92	95	80-125	5.7	22
		CHCT_Br	5.00	4.51	4.21	90	01	90.125	1.1	22
		CHCIBr 2	5.00	4.60	4.04	32	110	90 125	27	22
		CHBr 3	10.0	11.3	11.0	113	110	00-120	2.1	11
		Matrix: Aqueo	us							



and and a

1

]

3

1

TABLE C-3 - (CONTINUED)

DWK	Samples	Analyte	Spiked	Concent	tration		Accuracy	(%)	RPD	Limit
Batch No.	Received		Amount	LCS1	LCS2	LCST	LCS2	Limits		
8455-8471	07/22/88	No THM's Done								
8472-8522	08/03/88	No THM's Done								
8527-8529	07/22/88	No THM's Done								
8541-8563	08/01/88	No THM's Done								
8570-8576	08/11/88	CHCI2	5.00	4.41	4.42	88	88	80-125	0.0	22
		CHCI_Br	5.00	4.36	4.25	87	85	80-125	2.3	22
		CHCIBr,	5.00	3.79	3.77	76#	75#	80-125	1.3	22
		CHBr 3 Matrix: Aqueo	10.0 us	7.60	7.80	76#	78#	80-125	2.6	22
		(# = Recovery	outside	standard	QC limit	s.)				
3577-8585	08/18/88	CHCI	5.00	4.54	4.53	91	91	80-125	0.0	22
		CHCIBr	10.0	7.76	8.17	78#	82	80-125	5.0	22
		CHC IBr	10.0	7.92	8.19	79#	82	80-125	3.8	22
		CHBr3	20.0	15.9	16.5	80	82	80-125	2.5	22
		Matrix: Aqueo	us							
		(# = Recovery	outside	standard	QC limits	s.)				
586-8593	08/24/88	CHC 1 3	5.00	4.94	5.01	99	100	80-125	1.0	22
		CHCI_Br	5.00	4.94	4.96	99	99	80-125	0.0	22
		CHCIBr 2	5.00	4.19	4.20	84	84	80-125	0.0	22
		Matrix: Aqueo	U.UI	8.63	9.43	86	94	80-125	8.9	22
500 0614	09/22/99	CHCI	5.00	4 94	5.01	00	100	90 125	1.0	22
030-0014	00/ 22/ 00	CHC 13Br	5.00	4.94	1.06	00	00	90-125	0.0	22
		CHCIR	5.00	4 19	4 20	84	84	80-125	0.0	22
		CHBr 2	10.0	8 63	9.43	86	94	80-125	8 9	22
		Matrix: Aqueou	us	0.00	5.10	00	54	00-120	0.5	LL
644-8645	08/22/88	CHCI	5.00	4.94	5.01	99	100	80-125	1.0	22
2		CHCIBr	5.00	4.94	4.96	99	99	80-125	0.0	22
		CHC IBr	5.00	4.19	4.20	84	84	80-125	0.0	22
		CHBr, 2	10.0	8.63	9.43	86	94	80-125	8.9	22
		Matrix: Aqueou	IS							
620-8643	08/29/88	CHCI3	5.00	3.96	4.67	79#	93	80-125	16.0	22
		CHCI2Br	10.0	8.58	9.88	86	99	80-125	14.0	22
		CHCIBr2	10.0	7.14	8.72	71#	87	80-125	20.0	22
		CHBr 3	20.0	15.0	19.6	75#	98	80-125	27.0*	22
		Macinx: AQUEOU	o unhaida -	hondord.	00 11-14-			14- 00 11-1	4- N	

Ĩ

DWR	Samples	Analyte	Spiked	Concent	tration	A	ccuracy	(%)	RPD	Limit
Batch No.	Rece i ved		Amount	LCS1	LCS2	LCS1	LCS2	Limits		
			-							
8649-8664	09/07/88	CHCI3	5.00	5.99	5.25	120	105	80-125	13.0	22
		CHCI_Br	5.00	5.82	5.03	116	101	80-125	14.0	22
		CHC IBr	5.00	4.90	4.52	98	90	80-125	8.5	22
		CHBr,	10.0	9.77	9.00	98	90	80-125	8.5	22
		Matrix: Aqueo	ous							
0000 0000	00/15/09	CHCI	5 00	5 24	5 14	107	102	80,125	2.8	22
0000-0000	03/13/00	CUCI 3pr	5.00	4 50	4 72	02	05	00 125	2.0	22
		CHC 12DI	5.00	4.09	4.73	32	30	00-125	3.2	22
		CHCIBr 2	5.00	4.04	4.03	93	91	80-125	2.2	22
		UHBr 3	10.0	7.96	9.32	80	93	80-125	15.0	22
		Matrix: Aqueo	US							
8681-8689	09/16/88	CHCI	5.00	5.34	5.14	107	103	80-125	3.8	22
		CHCI_Br	5.00	4.59	4.73	92	95	80-125	3.2	22
		CHCIBr	5.00	4.64	4.53	93	91	80-125	2.2	22
		CHBr 2	10.0	7.96	9.32	80	93	80-125	15.0	22
		Matrix: Aqueo	us							
8690-8697	09/23/88	CHC 13	5.00	6.19	6.26	124	125	80-125	0.8	22
		CHC1_Br	5.00	5.36	5.63	107	113	80-125	5.4	22
		CHC IBr	5.00	4.93	5.48	99	110	80-125	10.0	22
		CHBr ₃	10.0	8.94	10.4	89	104	80-125	16.0	22
		Matrix: Aqueo	US							
0000 0705	10/02/00	CHCI	5.00	6 10	6.26	124	125	80_125	0.8	22
0090-0700	10/03/00	CHC 3	5.00	5.26	5.62	107	112	20 125	5.4	22
		CHCIE	5.00	4.02	5.40	00	110	00-125	10.0	22
		CUBr 2	5.00	4.93	0.48	33	104	00-125	10.0	22
		CHDF 3	10.0	8.94	10.4	69	104	80-125	10.0	22
		Matrix: Aqueo	us							
8710-8718	10/13/88	CHCI	5.00	6.19	6.26	124	125	80-125	0.8	22
ar sa sa sa	1999) A 1999 A 1997	CHCI_Br	5.00	5.36	5.63	107	113	80-125	5.4	22
		CHC IBr -	5.00	4.93	5.48	99	110	80-125	10.0	22
3		CHBr 2	10.0	8.94	10.4	89	104	80-125	16.0	22
		Matrix: Aqueo	JS	0.01	10.1			00 120	1010	
0710 0700	10/24/00	CHCI	5.00	5 50	5 60	112	112	80-125	0.0	22
0/19-0/20	10/ 24/ 00	CHC 13	10.0	10.6	10 1	106	101	80-125	4.8	22
			10.0	0.64	0.70	00	07	80_125	1.0	22
		CHPr 2	20	10.9	10 0	00	100	80-125	1.0	22
		Unbr 3	20	19.0	19.9	39	100	00-120	1.0	22
		Matrix: Aqueou	15							

_

3

]

]

Contraction of the local division of the loc

TABLE C-3 - (CONTINUED)

0

ī

0

and and

DWR	Samples	Analyte	Spiked	Concent	tration	A	ccuracy	(%)	RPD	Limit
Batch No.	Received		Amount	LCS1	LCS2	LCS1	LCS2	Limits		
8727-8734	10/28/88	CHCI	5.00	5 58	5.60	112	112	80-125	0.0	22
0121-0104	10/20/00	CHCI Br	10.0	10.6	10 1	106	101	80-125	4.8	22
		CHCIRC	10.0	9 64	9.72	96	97	80-125	1.0	22
		CHBr 2	20	10.8	10 0	90	100	80-125	1.0	22
		Matrix: A	queous	15.0	13.5	55	100	00-120	1.0	22
8740-8747	11/10/88	CHCI	5.00	5.55	5.80	111	116	80-125	4.4	22
		CHCISBr	5.00	5.35	5.52	107	110	80-125	2.8	22
		CHCIBr	5.00	6.07	5.93	121	119	80-125	1.7	22
		CHBr 2	10.0	12.5	11.7	125	117	80-125	6.6	22
		Matrix: A	queous							
8749-8756	10/18/88	CHCI3	5.00	6.19	6.26	124	125	80-125	0.8	22
		CHC 12Br	5.00	5.36	5.63	107	113	80-125	5.4	22
		CHC IBr	5.00	4.93	5.48	99	110	80-125	10.0	22
		CHBr 3	10.0	8.94	10.4	89	104	80-125	16.0	22
		Matrix: A	queous							
8757-8764	11/29/88	CHCI3	5.00	5.55	5.80	111	116	80-125	4.4	22
		CHC1_Br	5.00	5.35	5.52	107	110	80-125	2.8	22
		CHCIBr2	5.00	6.07	5.93	121	119	80-125	1.7	22
		CHBr3	10.0	12.5	11.7	125	117	80-125	6.6	22
		Matrĭx: Ad	queous							
3775-8788	12/12/88	CHCI3	5.00	5.55	5.80	111	116	80-125	4.4	22
		CHC I_Br	5.00	5.35	5.52	107	110	80-125	2.8	22
		CHC IBr 2	5.00	6.07	5.93	121	119	80-125	1.7	22
		CHBr3	10.0	12.5	11.7	125	117	80-125	6.6	22
		Matrix: Ac	queous							
3789-8802	12/16/88	CHC 13	5.00	5.55	5.80	111	116	80-125	4.4	22
		CHCIZBr	5.00	5.35	5.52	107	110	80-125	2.8	22
		CHC IBr 2	5.00	6.07	5.93	121	119	80-125	1.7	22
		CHBr3	10.0	12.5	11.7	125	117	80-125	6.6	22
		Matrix: Ac	queous							
803-8808	12/15/88	CHCI	5.00	5.55	5.80	111	116	80-125	4.4	22
		CHC 12Br	5.00	5.35	5.52	107	110	80-125	2.8	22
		CHCIBr 2	5.00	6.07	5.93	121	119	80-125	1.7	22
		CHBra	10.0	12.5	11.7	125	117	80-125	6.6	22
		Matrix: Ad	lueous							

DWR	Samples	Analyte	Spiked	Concent	tration	A	ccuracy	(%)	RPD	Limit
Batch No.	Rece i ved		Amount	LCS1	LCS2	LCS1	LCS2	Limits		
0000 0010	12/15/09	CHCI	5.00	5 55	5.90	111	116	20 125		22
0003-0010	12/13/00	CHC 1 Br	5.00	5.35	5.52	107	110	00-125	9.4	22
		CHCIER	5.00	5.07	5.02	107	110	00-125	1.7	22
		CHRr 2	10.0	12.5	11 7	121	113	00-125	6.6	22
		Matrix: Aqu	eous	12.5	11.7	125	117	00-125	0.0	22
8818-8831	12/29/88	CHCI	5.00	5.55	5.80	111	116	80-125	4.4	22
		CHCISBr	5.00	5.35	5.52	107	110	80-125	2.8	22
		CHCIBr	5.00	6.07	5.93	121	119	80-125	1.7	22
		CHBr 2	10.0	12.5	11.7	125	117	80-125	6.6	22
		Matrix: Aque	BOUS							
8845-8858	01/17/89	CHCI3	5.00	5.26	5.16	105	103	80-125	1.9	22
		CHCI_Br	5.00	5.83	5.40	117	108	80-125	8.0	22
		CHC IBr,	5.00	5.21	4.95	104	99	80-125	4.9	22
		CHBr 2	10.0	10.5	9.84	105	98	80-125	6.9	22
		Matrix: Aque	eous							
9001-9051	01/20/89	CHCI3	5.00	4.54	5.06	91	100	80-125	10	22
		CHC1_Br	5.00	4.73	5.39	95	108	80-125	13	22
		CHCIBr2	5.00	4.65	5.18	93	104	80-125	11	22
		CHBr 3 Natrix: Anne	10.0	9.11	9.64	91	96	80-125	5.3	22
9052-9058	03/06/89	CHCI3	5.00	5.12	5.26	102	105	80-125	2.9	22
		CHCIZBr	5.00	4.97	4.37	99	93	80-125	6.2	22
		CHCIBr2	5.00	4.98	4.68	100	94	80-125	6.2	22
		CHBr3	10.0	9.44	8.85	94	88	80-125	6.6	22
		Matrix: Aque	OUS							
9096-9103	02/08/89	CHCI3	5.00	4.54	5.06	91	101	80-125	10	22
		CHCIZBr	5.00	4.73	5.39	95	108	80-125	13	22
30		CHCIBr,	5.00	4.65	5.18	93	104	80-125	11	22
		CHBr3	10.0	9.11	9.64	91	96	80-125	5.3	22
		Matrix: Aque	ous							
9104-9116	02/06/89	CHCI3	5.00	4.54	5.06	91	101	80-125	10	22
		CHCIZBr	5.00	4.73	5.39	95	108	80-125	13	22
		CHC IBr,	5.00	4.65	5.18	93	104	80-125	11	22
		CHBr ₂ ²	10.0	9.11	9.64	91	96	80-125	5.3	22
		Matrix: Aque	OUS							

Conservation of the local division of the lo

0

]

T

TABLE	C-3 -	(CONT	INUED)
-------	-------	-------	--------

DWR	Samples	Analyte	Spiked	Concent	ration	A	ccuracy	(%)	RPD	Limit
Batch No.	Received		Amount	LCS1	LCS2	LCS1	LCS2	Limits		
9117-9129	02/13/89	CHCI 3	5.00	5.24	5.62	105	112	80-125	6.5	22
		CHC1_Br	5.00	5.39	5.85	108	117	80-125	8.0	22
		CHC IBr 2	5.00	5.26	5.97	105	119	80-125	12	22
		CHBr 3 Matrix:	10.0 Aqueous	9.73	11.5	97	115	80-125	17	22
0120-0126	02/15/89	CHCI	5.00	5 24	5 62	105	112	80-125	6 5	22
5100-5100	02/10/00	CHCI Br	5.00	5 30	5.95	108	117	80-125	8.0	22
		CHCIEr	5.00	5.26	5.07	105	110	80 125	12	22
		CHRr 2	10.0	0.72	11 5	07	115	00-125	17	22
		Matrix:	Aqueous	3.75	11.5	37	115	80-125	17	22
9137-9144	02/15/89	CHCI	5.00	5.24	5.62	105	112	80-125	6.5	22
		CHCI	5.00	5.39	5.85	108	117	80-125	8.0	22
		CHCIBr	5.00	5.26	5.97	105	119	80-125	12	22
		CHBr 2	10.0	9.73	11.5	97	115	80-125	17	22
		Matrix: /	Aqueous							
9151-9158	02/23/89	CHCI	5.00	5.24	5.62	105	112	80-125	6.5	22
		CHCI_Br	5.00	5.39	5.85	108	117	80-125	8.0	22
		CHC IBr,	5.00	5.26	5.97	105	119	80-125	12	22
		CHBr, 2	10.0	9.73	11.5	97	115	80-125	17	22
		Matrix: /	Aqueous							
9186-9193	03/08/89	CHCI	5.00	5.12	5.26	102	105	80-125	2.9	22
		CHCI_Br	5.00	4.97	4.37	99	93	80-125	6.2	22
		CHCIBr,	5.00	4.98	4.68	100	94	80-125	6.2	22
		CHBr,	10.0	9.44	8.85	94	88	80-125	6.6	22
		Matrix: A	Aqueous							ŧ
211-9217	03/15/89	CHCI3	5.00	5.12	5.26	102	105	80-125	2.9	22
		CHC 12Br	5.00	4.97	4.37	99	93	80-125	6.2	22
		CHCIBr,	5.00	4.98	4.68	100	94	80-125	6.2	22
		CHBr 2	10.0	9.44	8.85	94	88	80-125	6.6	22
		Matrix: A	queous							
218-9219	03/16/89	CHCI3	5.00	5.12	5.26	102	105	80-125	2.9	22
		CHC 12Br	5.00	4.97	4.37	99	93	80-125	6.2	22
		CHCIBr,	5.00	4.98	4.68	100	94	80-125	6.2	22
		CHBr 2	10.0	9.44	8.85	94	88	80-125	6.6	22
		Matrix: A	queous							

T

(Contraction)

and the second

Number of State

Province of

DWR	Samples	Analyte	Spiked	Concen	tration	A	ccuracy	(%)	RPD	Limit
Batch No.	Received		Amount	LCS1	LCS2	LCS1	LCS2	Limits		
9220-9225	03/15/89	CHCL	5.00	5 12	5.26	102	105	80-125	2.9	22
3220-3225	00/10/00	CHCI Br	5.00	A 07	4 37	00	03	90-125	6.2	22
		CHCIEr	5.00	4.09	4.69	100	0.4	90 125	6.2	22
		CHRr 2	10.0	9.30	9.00	0.4	00	00-125	6.6	22
		Matrix: Aqu	eous	5.44	0.00	54	00	00-125	0.0	22
9226-9233	03/21/89	CHCL	5.00	4,64	4.63	93	93	80-125	0.0	22
		CHC L Br	5.00	4.70	4.40	94	88	80-125	6.6	22
		CHC IBr -	5.00	4.74	4.67	95	93	80-125	2.1	22
		CHBr 2	10.0	9.32	9.21	93	92	80-125	1.1	22
		Matrix: Aque	eous							
9239-9245	04/06/89	CHCI	5.00	4.64	4.63	93	93	80-125	0.0	22
		CHCI	5.00	4.70	4.40	94	88	80-125	6.6	22
		CHC IBr	5.00	4.74	4.67	95	93	80-125	2.1	22
		CHBr, 2	10.0	9.32	9.21	93	92	80-125	1.1	22
		Matrix: Aque	eous							
9253-9254	04/14/89	CHCI3	5.00	4.64	4.63	93	93	80-125	0.0	22
		CHC12Br	5.00	4.70	4.40	94	88	80-125	6.6	22
		CHCIBr2	5.00	4.74	4.67	95	93	80-125	2.1	22
		CHBr 3 Matrix: Aque	10.0 eous	9.32	9.21	93	92	80-125	1.1	22
9351-9373	06/28/89	CHCI	5.0	4.13	4.78		89	80-125	15	22
		CHCI	10.0	9.32	10.3		98	80-125	10	22
		CHCIBr	10.0	9.24	10.2		97	80-125	9.9	22
		CHBr 2	20.0	21.0	24.0		113	80-125	13	22
		Matrix: Aque	OUS							
9374-9399	06/29/89	CHCI3	5.0	4.13	4.78		89	80-125	15	22
		CHCIZBr	10.0	9.32	10.3		98	80-125	10	22
		CHCIBr2	10.0	9.24	10.2		97	80-125	9.9	22
		CHBr3	20.0	21.0	24.0		113	80-125	13	22
2nd Test		CHC 13	5.0	4.67	4.54		92	80-125	2.8	22
		CHCI_Br	10.0	9.97	9.51		97	80-125	4.7	22
		CHCIBr 2	10.0	10.5	10.2		104	80-125	2.9	22
		CHBr <b>3</b> Matrix: Aque	20.0 ous	21.0	20.4		104	80-125	2.9	22
9439-9477	06/27/89	CHCI	5.0	4.74	4.87		96	80-125	2.7	22
		CHCI_Br	10.0	10.1	10.5		103	80-125	3.9	22
		CHCIBr	10.0	10.6	11.3		110	80-125	6.4	22
		CHBr 2	20.0	21.9	23.1		113	80-125	5.3	22
		Matrix: Aque	ous	(2003)	01783			10100000		877.59

Total Contract

and and

and the second

Contract of the local division of the local

T

1

0

]

		Concent	ration	(ua/L)	Ac	curacy ()	3)	Precision	(RPD)
Date	Chemical S	piked	Test 1	Test 2	Test 1	Test 2	Limits	LCS	Limits
10/09/87	Methomyl	50	43	43	86	86	NC	0.0	NC
	Carbaryl	50	42	42	84	84	NC	0.0	NC
	Propham	50	49	50	98	100	NC	1.0	NC
	Atrazine	2.0	1.7	2.0	85	100	NC	16.2	NC
	Simazine	2.0	1.5	1.9	75	95	NC	23.5	NC
	Bentazon	10	9.57	6.4	95.7	64.0	NC	39.7	NC
	Diazinon	20	19	18	95	90	NC	5.41	NC
	Parathion, eth	yl 20	17	17	85	85	55-138	0.0	36
	Ethion	20	17	18	85	90	NC	5.71	NC
	2,4-D	10	11.4	12.2	114	122	NC	6.78	NC
	DNBP	10	12.1	13.0	121	130	NC	7.17	NC
	Alachlor	2.0	2.1	2.0	105	100	NC	4.88	NC
	Dacthal	0.5	0.41	0.40	82	80	NC	0.25	NC
	Captan	4.0	3.9	3.8	98	95	NC	3.11	NC
	Dicofol	4.0	4.8	4.6	120	115	NC	4.26	NC
	Propanil	10	9.6	9.3	96	93	NC	3.17	NC
10/28/87	Bentazon	2.0	0.9	1.3	45	65	NC	36	NC
	Diazinon	20	19	18	95	90	NC	5.41	NC
	Parathion, ethy	/1 20	17	17	85	85	55-138	0.0	36
	Ethion	20	17	18	85	90	NC	5.71	NC
	2,4,5-TP/Silve	ex 10	11.4	12.2	114	122	72-98	6.78	23
	2,4,5-T	10	12.1	13.0	121	130	NC	7.17	NC
	Alachlor	2.0	2.1	2.0	105	100	NC	4.88	NC
	Dacthal	0.5	0.41	0.40	82	80	NC	0.25	NC
	Captan	4.0	3.9	3.8	98	95	NC	3.11	NC
	Dicofol	4.0	4.8	4.6	120	115	NC	4.26	NC
	Propani I	10.0	9.6	9.3	96	93	NC	3.17	NC
12/09/87	Alachlor	2.0	1.6	1.5	80	75	NC	6.4	NC
	Dacthal	0.5	0.40	0.39	80	78	NC	2.5	NC
	Captan	4.0	0.75	0.79	19	20	NC	5.0	NC
	Dicofol	4.0	3.0	3.3	75	85	NC	10	NC
	Carbofuran	100.0	144.0	102.0	144	102	NC	34.1	NC
	Methylparathio	n 20.0	22.5	14.9	112.5	74.5	NC	40.6	NC
	Diazinon	20.0	23.3	14.5	116.5	72.5	NC	46.6	NC
	Parathion	20.0	22.2	14.6	112.5	73.0	NC	42.6	NC
	Molinate	100.0	134	79.3	134.0	79.3	NC	51.2	NC
	Thiobencarb	100.0	119	86.6	119.0	86.6	NC	31.5	NC
	2,4-D	10.0	10.0	9.60	100	96.0	NC	4.08	NC
	DNBP	10.0	11.7	10.80	117	108	NC	8.00	NC
	Atrazine	2.0	1.7	3.73	85	186	NC	74.5	NC
	Simazine	2.0	1.63	3.88	81.5	194	NC	81.5	NC
	Carbaryl	50.0	43	46	86	92	102-117	7.1	11
	Bentazon	10.0	9.3	6.2	93	62	NC	40	NC

#### TABLE C-4 - SPIKED DUPLICATE ANALYSES FOR PESTICIDES (Clayton Environmental Consultants 1987-1988)

NA = Not Applicable

NC = Not Calculated

* = Recovery Outside Standard QC Limits
 or RPD outside QC limits

.

No. of Lot of Lo

and a

	Co		cent r	ation	(ug/L)		Accuracy (9	5)	Precisio	on (RPD)
Date	Chemical Spik	e	IT	ïest 1	Test 2	Test 1	Test 2	Limits	LCS	Limits
12/09/87	Glyphosate		6.0	5.7	5.6	95	93	NC	2.1	NC
(cont.)	Propanil		10.0	7.2	6.7	72	67	NC	7.1	NC
11/12/87	Alachlor		21	1.6	1.5	80	75	NC	6.4	NC
	Dacthal		0.5	0.4	0.39	80	78	60-130	2.5	NC
	Captan		4.0	0.75	0.79	19	20	NC	5.0	NC
	Dicofol		4.0	4.3	4.1	108	103	NC	4.7	NC
	Carbofuran		100.0	144.0	102	144	102	69-164	34 1	NC
	Methylparathion	12	20.0	22.5	14.9	112.5	5 74.5	NC	40.6	NC
	Diazinon	C.	20.0	23.3	14.5	116.5	5 72.5	NC	46.6	NC
	Parathion		20.0	22.2	14.6	112.5	5 73.0	NC	42.6	NC
	Molinate		100. 0	134.0	79.3	134.0	79.3	NC	51.2	NC
	Thiobencarb		100. 0	119.0	86.6	119.0	86.6	NC	31.5	NC
	2.4.D		10.0	10.0	9.60	100.0	96.0	75-125	4.08	NC
	DNBP		10.0	11.7	10.80	117.0	108.0	NC	8.00	NC
	Carbaryl		50.0	43.0	46.0	86.0	92.0	102-117	7.1	11
	Bentazon		10.0	9.3	6.2	93.0	62.0	22-119	40.0	NC
	Glyphosate		6.0	5.7	5.6	95	93	NC	2.1	NC
	Propani I		10.0	7.2	9.5	72.0	95.0	NC	28.0	NC
11/17/87	Carbaryl		50.0	43.0	46.0	86.0	92.0	102-117	7.1	11
	Carbofuran		100.0	144.0	102.0	144.0	102.0	NC	34.1	NC
	Methylparathion	5	20.0	225.0	14.9	112.5	74.5	NC	40.6	NC
	Diazinon	-	20.0	23.3	14.5	116.5	72.5	17-118	46.6	21
	Ethylparathion	-	20.0	22.2	14.6	112.5	73.0	19-125	42.6	30
	Molinate	-	100.0	134.0	79.3	134.0	79.3	NC	51.2	NC
	Thiobencarb		100.0	119.0	86.6	119.0	86.6	NC	31.5	NC
	2,4-D	1	5.0	4.70	5.0	94.0	100.0	NC	6.18	NC
	DNBP		5.0	5.90	5.82	118	116	NC	1.71	NC
	Alachlor	1	2.0	1.60	150	80	75	NC	6.4	NC
	Dacthai	(	0.5	0.40	0.39	80	78	NC	2.5	NC
	Captan		4.0	0.75	0.79	19	20	NC	5.0	NC
	Dicofol		.0	4.3	4.10	108	103	NC	4.7	NC
	Propanil 1		0	7.2	9.5	72	95	NC	28	NC
	Atrazine	2	.0	1.7	3.73	85	186	NC	74.5	NC
	Simazine	2	.0	1.63	3.88	81.5	194	NC	81.5	NC
	Bentazon 1	$\bigcirc$	0 9	9.3	6.2	93	62	NC	40	NC

## TABLE C-4 (Clayton cont.)

NA = Not Applicable

NC = Not Calculated

* = Recovery Outside Standard QC Limits or RPD outside QC limits

# TABLE C-4 (cont.)

South States

の一切の

and the second se

and the second

Section 2.2

and the second

1-00

......

and the second

and the second

Contrada de

and a state

and the second

...

## (Enseco Laboratory 1988 - 1989)

Date         Onemical         Spiked         Test 1         Test 2         Linits         LCS         Linits           08/24/88         Ordram         4.0         3.35         3.28         79         82         45-110         3.8         -30           (Weilinate)         Bolero         4.0         3.39         3.44         85         96         55-110         1.2         <30           (Inidecoratb)         Diazinon         10.0         6.10         5.50         61         55         28-126         10.0         <626           Ethyl parathion10.0         6.34         5.73         63         57         30-125         12.0         <18           Alachior         1.0         1.95         0.93         105         93         75-125         9.5         <20           MCPA         200.0         180.0         198.0         90         99         75-125         9.5         <20           McPA         200.0         180.0         188.0         188         166         NC         6.3         NC           Diazinon         10.0         6.10         5.50         51         52         8-126         10.0         <32           Ethion			Concer	tration	(ug/L)		Accuracy (	(%)	Prec	ision (RPD)
08/24/88         Ordram         4.0         3.15         3.28         79         82         45-110         3.8         <30           08/24/88         Ordram         4.0         3.39         3.44         85         86         55-110         1.2         <30	Date	Chemical	Spiked	Test 1	Test 2	Test	1 Test 2	Limits	LCS	Limits
08/24/88         0rdram         4.0         3.15         3.28         79         82         40-10         3.8         <40				0.15		70	00	45 110		20
(M011mate)         Bolero         4.0         3.39         3.44         85         86         55-110         1.2         <30	08/24/88	Urdram	4.0	3.15	3.28	79	82	45-110	3.8	<30
Bolero         4.0         3.39         3.44         85         86         35-110         1.2         <30           (Thiobencarb)         Diazinon         10.0         6.10         5.50         61         55         26-126         10.0         -26           Ethion         10.0         5.94         5.25         59         52         31-142         12.0         -18           2,4-D         1.0         1.05         0.93         105         93         75-125         9.5         -20           Alachlor         1.0         1.92         1.42         192         142         NC         30.0         NC           Propanil         1.0         1.92         1.42         192         142         NC         30.0         NC           Monitor         50.0         27.8         30.1         56         60         NC         6.9         NC           Diazinon         10.0         6.14         5.73         63         57         30-125         10.0         -26           Ethyl parathion10.0         6.34         5.73         63         57         30-125         10.0         -26           Ethyl parathion10.0         8.60         9.0 <td></td> <td>(Molinate)</td> <td></td> <td>0.00</td> <td>o 11</td> <td>05</td> <td></td> <td>FF 110</td> <td>1.0</td> <td>20</td>		(Molinate)		0.00	o 11	05		FF 110	1.0	20
(Iniodencarb)         Diazinon         10.0         6.10         5.50         61         55         28-128         10.0         -26           Ethyl parathion10.0         6.34         5.73         63         57         30-125         10         -32           Ethion         10.0         5.94         5.25         59         52         31-142         12.0         -718           2,4-0         1.0         1.95         0.93         105         93         75-125         9.5         -220           Alachlor         1.0         1.92         1.42         192         142         NC         30.0         NC           Orthere         50.0         NA         NA         NA         NA         NA         NA         NA         NC         NC         6.9         NC           Diazinon         10.0         6.34         5.73         63         57         30-125         10.0         -26           Ethyl parathion10.0         6.34         5.73         63         57         30-125         10.0         -26           Ethyl parathion10.0         6.34         5.73         63         57         30-125         10.0         -26           Ethy		Bolero	4.0	3.39	3.44	85	80	55-110	1.2	<30
Diazinon 10.0 6.10 5.50 61 55 26-125 10. <225 Ethyi parathion10.0 6.34 5.73 63 57 30-125 10. <220 MCPA 200.0 180.0 198.0 99 975-125 9.5 <200 Alachior 1.0 1.98 1.86 198 186 NC 6.3 NC Propanil 1.0 1.92 1.42 192 142 NC 30.0 NC Orthene 50.0 NA NA NA NA NA NA NC NA NC Wathanicophos Wonitor 50.0 27.8 30.1 56 60 NC 6.9 NC Diazinon 10.0 6.34 5.73 63 57 30-125 10.0 <26 Ethyi parathion10.0 6.34 5.73 63 57 30-125 10.0 <28 Ethyi parathion10.0 6.34 5.73 63 57 30-125 10.0 <28 Ethyi parathion10.0 8.49 5.24 59 52 31-142 12.0 <418 Atrazine 2.0 1.89 1.95 95 98 NC 3.1 NC Simazine 2.0 0.20 2.07 100 104 NC 3.9 NC Carbofuran 10.0 11.5 10.3 115 103 73-116 11.0 <20 Bentazon 10.0 8.60 9.0 86 90 65-120 4.5 <30 Nudr in 20.0 18.1 18.5 90 92 52-118 2.2 <37 (Wethomyi) Triforine 20.0 196.0 193.0 98 96 51-127 2.1 <33 by HPC Carbaryi 20.0 12.6 21.1 113* 106 62-111 6.4 <29 Propham 20.0 18.3 19.4 92 97 57-122 5.3 <41 08/25/88 Ordram 4.0 3.79 3.68 95 92 55-110 3.2 <30 (Thiobercarb) Dinoseb 50.0 61.8 63.4 124 127 75-125 2.4 <20 2,4-0 1.0 1.02 0.920 102 92 75-128 1.0 <22 6.3 <41 08/25/88 Ordram 4.0 3.57 3.47 89 87 45-110 2.3 <30 (Thiobercarb) Dinoseb 50.0 61.8 63.4 124 127 75-125 2.4 <20 2,4-0 1.0 1.02 0.920 102 92 75-128 1.0 <22 6.3 <41 Dinoseb 50.0 61.8 63.4 124 127 75-125 1.0 <22 3. <41 08/25/88 Ordram 4.0 3.57 3.47 89 87 45-110 2.3 <30 (Thiobercarb) Dinoseb 50.0 0.146 0.130 73 65 40-131 12.0 <20 2,4-0 1.0 1.02 0.920 102 92 75-128 1.0 <22 Adrin 0.0200 0.156 0.144 78 72 55-128 1.0 <22 Adrin 0.0200 0.164 0.130 73 65 40-131 12.0 <20 Adrin 0.0200 0.146 0.130 73 65 40-131		(Thiobencart	))							
Ethyl parathion 10.0 6.34 5.73 63 57 30-125 10		Diazinon	10.0	6.10	5.50	61	55	26-126	10.0	<26
Ethion 10.0 5.94 5.25 59 52 31-142 12.0 <18 2,4-0 1.0 1.05 0.93 105 93 75-125 12.0 <20 MCPA 200.0 180.0 198.0 90 99 75-125 9.5 <20 Alachior 1.0 1.92 1.42 192 142 NC 30.0 NC Propanii 1.0 1.92 1.42 192 142 NC 30.0 NC Orthene 50.0 NA NA NA NA NA NA NC NA NC Methamidophos Monitor 50.0 27.8 30.1 56 60 NC 6.9 NC Diazinon 10.0 6.10 5.50 61 55 26-126 10.0 <26 Ethyl parathion10.0 6.34 5.73 63 57 30-125 10.0 <32 Ethion 10.0 5.94 5.24 59 52 31-142 12.0 <18 Atrazine 2.0 0.2 0.2 0.27 100 104 NC 3.9 NC Carbofuran 10.0 11.5 10.3 115 103 73-116 11.0 <20 Bentazon 10.0 8.60 9.0 86 90 65-120 4.5 <30 Nudrin 20.0 18.1 18.5 90 92 52-118 2.2 <37 (Methonyl) Triforine 200.0 196.0 193.0 98 96 51-127 2.1 <33 <b>by HPLC</b> Carbaryl 20.0 18.3 19.4 92 97 57-122 5.3 <41 08/25/88 0rdram 4.0 3.57 3.47 89 87 45-110 2.3 <30 (Thiobencarb) Dinoseb 50.0 61.8 63.4 124 127 75-125 2.4 <20 2,4-0 1.0 1.02 0.920 102 92 75-110 3.2 <30 (Thiobencarb) Dinoseb 50.0 61.8 63.4 124 127 75-125 2.4 <20 2,4-0 1.0 1.02 0.920 102 92 75-125 10.0 <20 Gamma-BHC 0.200 0.156 0.144 78 72 56-123 8.0 <15 (Lindane) Dinoseb 50.0 61.8 63.4 124 127 75-125 2.4 <20 2,4-0 1.0 1.02 0.920 102 92 75-150 1.0 <20 Gamma-BHC 0.200 0.156 0.144 78 72 56-123 8.0 <15 (Lindane) Dieldrin 0.500 0.412 0.421 82 84 52-128 2.4 <20 2,4-0 1.0 1.00 0.920 102 92 75-125 10.0 <20 Gamma-BHC 0.200 0.146 0.130 73 65 40-131 12.0 <20 Gamma-BHC 0.200 0.148 0.139 74 70 40-120 5.6 <22 Endrin 0.500 0.412 0.421 82 84 52-128 2.4 <18 Heptachlor 0.200 0.146 0.130 73 65 40-131 12.0 <20 Aldrin 0.200 0.148 0.139 74 70 40-120 5.6 <22 Endrin 0.500 0.426 0.453 85 91 56-121 6.8 <21 Heptachlor 0.200 0.146 0.130 73 65 40-131 12.0 <20 Aldrin 0.500 0.426 0.453 85 91 56-121 6.8 <22 Endrin 0.500 0.426 0.453 85 91 56-121 6.8 <22 Ethyl Parathion10.0 8.31 7.48 83 75 30-125 10.0 <28 Ethyl Parathion10.0 8.31 7.48 83 75 30-125 10.0 <28 NA = Not Applicable No Exteriored		Ethyl parati	hion10.0	6.34	5.73	63	57	30-125	10	<32
2,4-0 1.0 1.05 0.93 105 93 75-125 12.0 <20 MCPA 200.0 180.0 198.0 90 99 75-125 12.0 <20 Alachior 1.0 1.38 1.86 198 186 NC 6.3 NC Propanii 1.0 1.92 1.42 192 142 NC 30.0 NC Orthene 50.0 NA NA NA NA NA NA NC NA NC Methamidophos Monitor 50.0 27.8 30.1 56 60 NC 6.9 NC Diazinon 10.0 6.10 5.50 61 55 26-128 10.0 <26 Ethyl parathion10.0 6.34 5.73 63 57 30-125 10.0 <26 Ethyl parathion10.0 5.94 5.24 59 52 31-142 12.0 <18 Atrazine 2.0 1.89 1.95 95 98 NC 3.1 NC Simazine 2.0 2.0 2.07 100 104 NC 3.9 NC Carbofuran 10.0 11.5 10.3 115 103 73-116 11.0 <20 Bentazon 10.0 8.60 9.0 86 90 65-120 4.5 <30 Nudrin 20.0 18.1 18.5 90 92 52-118 2.2 <37 (Methomyl) Triforine 20.0 18.3 19.4 92 97 57-122 5.3 <41 08/25/88 0rdram 4.0 3.57 3.47 89 87 45-110 2.3 <30 Ndrin 0.30 18.3 19.4 92 97 57-122 5.3 <41 08/25/88 0rdram 4.0 3.57 3.47 89 87 45-110 2.3 <30 (Thiosen 50.0 61.8 63.4 124 127 75-125 2.4 <20 C,4-0 1.0 1.02 0.920 102 92 75-115 10.0 <20 Bana_BHC 0.200 0.156 0.144 78 72 56-123 8.0 <15 (Lindane) Dinoseb 50.0 61.8 63.4 124 127 75-125 2.4 <20 C,4-0 1.0 1.02 0.920 102 92 75-125 10.0 <20 Gamma-BHC 0.200 0.156 0.144 78 72 56-123 8.0 <15 (Lindane) Dinoseb 50.0 61.8 63.4 124 127 75-125 2.4 <20 C,4-0 1.0 1.02 0.920 102 92 75-125 10.0 <20 Gamma-BHC 0.200 0.156 0.144 78 72 56-123 8.0 <15 (Lindane) Dieldrin 0.500 0.412 0.421 82 84 52-126 2.4 <18 Heptachlor 0.200 0.146 0.130 73 65 40-131 12.0 <20 Aldrin 0.500 0.418 0.130 73 65 40-131 12.0 <20 Aldrin 0.500 0.426 0.453 85 91 56-121 6.8 <21 Endrin 0.500 0.426 0.453 85 91 56-121 6.8 <21 Heptachlor 0.200 0.148 0.130 73 65 40-131 12.0 <20 Aldrin 0.500 0.426 0.453 85 91 56-121 6.8 <21 Heptachlor 0.200 0.146 0.130 73 65 40-131 12.0 <20 Aldrin 0.500 0.426 0.453 85 91 56-121 6.8 <21 Heptachlor 0.200 0.146 0.130 73 65 40-131 12.0 <20 Aldrin 0.500 0.426 0.453 85 91 56-126 10.0 <28 End		Ethion	10.0	5.94	5.25	59	52	31-142	12.0	<18
MCPA         200.0         198.0         90         99         75-125         9.5         <20           Alachlor         1.0         1.98         1.42         192         142         NC         6.3         NC           Propanil         1.0         1.92         1.42         192         142         NC         30.0         NC           Orthene         50.0         NA         NA         NA         NA         NA         NC         NA         NC           Monitor         50.0         27.8         30.1         56         60         NC         6.9         NC           Diazinon         10.0         6.10         5.50         61         55         28-126         10.0         -26           Ethyl parathion         0.0         6.34         5.73         63         57         30-125         10.0         -32           Ethyl parathion         10.0         6.34         5.24         59         52         31-142         12.0         <18		2,4-D	1.0	1.05	0.93	105	93	75-125	12.0	<20
Alachlor 1.0 1.98 1.86 198 186 NC 6.3 NC Propanil 1.0 1.92 1.42 192 142 NC 30.0 NC Orthene 50.0 NA NA NA NA NA NC NA NC Methamidophos Monitor 50.0 27.8 30.1 56 60 NC 6.9 NC Diazinon 10.0 6.10 5.50 61 55 26-126 10.0 <26 Ethyl parathion 10.0 6.34 5.73 63 57 30-125 10.0 <32 Ethion 10.0 5.94 5.24 59 52 31-142 12.0 <18 Atrazine 2.0 1.89 1.95 95 98 NC 3.1 NC Simazine 2.0 2.0 2.07 100 104 NC 3.9 NC Carbofuran 10.0 11.5 10.3 115 103 73-116 11.0 <20 Bentazon 10.0 8.60 9.0 86 90 65-120 4.5 <30 Nudr in 20.0 18.1 18.5 90 92 52-118 2.2 <37 (Methomyl) Triforine 200.0 196.0 193.0 98 96 51-127 2.1 <33 by PPLC Carbofuran 20.0 18.3 19.4 92 97 57-122 5.3 <41 08/25/88 0rdram 4.0 3.57 3.47 89 87 45-110 2.3 <30 Bolero 4.0 3.79 3.68 95 92 55-110 3.2 <30 (Thiobencarb) Dinoseb 50.0 61.8 63.4 124 127 75-125 2.4 <20 2.4-D 1.0 1.02 0.920 102 92 75-112 3.0 <30 Bolero 4.0 3.07 3.47 89 87 45-110 2.3 <30 Chibobencarb) Dinoseb 50.0 61.8 63.4 124 127 75-125 2.4 <20 2.4-D 1.0 1.02 0.920 102 92 75-125 10.0 <20 Gama-BHC 0.200 0.146 0.130 73 65 40-131 12.0 <20 Gama-BHC 0.200 0.146 0.139 73 65 40-131 12.0 <20 Addrin 0.500 0.412 0.421 82 84 52-126 2.4 <18 Heptachlor 0.200 0.146 0.139 73 65 40-131 12.0 <20 Addrin 0.500 0.412 0.421 82 84 52-126 2.4 <18 Heptachlor 0.200 0.146 0.139 73 65 40-131 12.0 <20 Addrin 0.500 0.426 0.453 85 91 55-121 6.8 <21 4,4'DDT 0.500 0.426 0.453 85 91 55-121 6.8 <21 4,4'DDT 0.500 0.426 0.453 85 91 55-121 6.8 <21 A,4'DDT 0.500 0.426 0.453 85 91 55-121 6.8 <21 A,4'DDT 0.500 0.426 0.453 81 73 28-126 10.0 <28 Ethyl Parathion10.0 8.31 7.48 83 75 30-125 10.0 <28 At a Not Applicable NC eNot Calculated * Recovery Outside Standard 0C Limits		MCPA	200.0	180.0	198.0	90	99	75-125	9.5	<20
Propanil         1.0         1.92         1.42         192         142         NC         30.0         NC           Orthene         50.0         NA         NA         NA         NA         NA         NA         NC         NA         NC           Monitor         50.0         27.8         30.1         56         60         NC         6.9         NC           Diazinon         10.0         6.10         5.50         61         55         28-126         10.0         -26           Ethion         10.0         5.94         5.24         59         52         31-142         12.0         -18           Atrazine         2.0         1.95         95         98         NC         3.1         NC           Simazine         2.0         2.07         100         104         NC         3.9         NC           Carbofuran         10.0         8.60         9.0         86         90         65-126         -30           Nudrin         20.0         18.1         18.5         90         92         52-118         2.2         -37           (Methomyl)         Triforine         200.0         196.0         193.0         98		Alachior	1.0	1.98	1.86	198	186	NC	6.3	NC
Orthene         50.0         NA         NA         NA         NA         NA         NA         NC         NC         NA         NC         NC         NC         NC         NC         NC         NC         NC         SIZ         Ethion         10.0         6.34         5.73         663         57         30-125         10.0         4.32         Ethion         11.20         420         418         4120         418         4120         418         4120         416         416         420         416         410         410         410         410         410         410         410         410         410         410         410         410         410         410         410         410         410         410         <		Propanil	1.0	1.92	1.42	192	142	NC	30.0	NC
Wethamildophos         Monitor         50.0         27.8         30.1         56         60         NC         6.9         NC           Diazinon         10.0         6.10         5.50         61         55         28-126         10.0         -26           Ethyi parathion         10.0         5.94         5.24         59         52         31-142         12.0         <18		Orthene	50.0	NA	NA	NA	NA	NC	NA	NC
Monitor         50.0         27.8         30.1         56         60         NC         6.9         NC           Diazinon         10.0         6.10         5.50         61         55         26-126         10.0         <26		Methamidopho	S							
Diazinon 10.0 6.10 5.50 61 55 26-126 10.0 <26 Ethyl parathion10.0 6.34 5.73 63 57 30-125 10.0 <32 Ethion 10.0 5.94 5.24 59 52 31-142 12.0 <18 Atrazine 2.0 1.89 1.95 95 98 NC 3.1 NC Simazine 2.0 2.0 2.07 100 104 NC 3.9 NC Carbofuran 10.0 11.5 10.3 115 103 73-116 11.0 <20 Bentazon 10.0 8.60 9.0 86 90 65-120 4.5 <30 Nudrin 20.0 18.1 18.5 90 92 52-118 2.2 <37 (Methomyl) Triforine 200.0 196.0 193.0 98 96 51-127 2.1 <33 by HPLC Carbaryl 20.0 22.6 21.1 113* 106 62-111 6.4 <29 Propham 20.0 18.3 19.4 92 97 57-122 5.3 <41 08/25/88 0rdram 4.0 3.57 3.47 89 87 45-110 2.3 <30 Bolero 4.0 3.79 3.68 95 92 55-110 3.2 <30 (Thiobencarb) Dinoseb 50.0 61.8 63.4 124 127 75-125 2.4 <20 2.4-0 1.0 1.02 0.920 102 92 75-125 10.0 <20 Gamma-BHC 0.200 0.156 0.144 78 72 56-123 8.0 <15 (Lindane) Dileidrin 0.500 0.412 0.421 82 84 52-126 2.4 <18 Heptachlor 0.200 0.148 0.139 74 70 40-120 5.6 <222 Endrin 0.500 0.412 0.433 85 91 56-121 6.8 <21 Heptachlor 0.200 0.148 0.139 74 70 40-120 5.6 <222 Endrin 0.500 0.426 0.453 85 91 56-121 6.8 <21 Atraz 5.6 2.21 6.3 <21 Atraz 5.6 2.22 Endrin 0.200 0.148 0.139 74 70 40-120 5.6 <222 Endrin 0.500 0.296 0.306 59 61 38-127 3.3 <27 Diazinon 10.0 8.07 7.33 81 73 26-128 10.0 <28 Atraz 5.6 2.22 Endrin 0.500 0.296 0.306 59 61 38-127 3.3 <27 Diazinon 10.0 8.07 7.33 81 73 26-126 10.0 <28 Atraz 5.6 2.22 Endrin 0.500 0.296 0.306 59 61 38-127 3.3 <27 Diazinon 10.0 8.07 7.33 81 73 26-126 10.0 <28 Ethyl Parathion10.0 8.07 7.33 81 73 26-126 10.0 <28 Xe = Not Applicable No E Not Calculated * = Recovery Outside Standard 0C Limits		Monitor	50.0	27.8	30.1	56	60	NC	6.9	NC
Ethyl parathion10.0       6.34       5.73       63       57       30-125       10.0       <32		Diazinon	10.0	6.10	5.50	61	55	26-126	10.0	<26
Ethion       10.0       5.94       5.24       59       52       31-142       12.0       <18		Ethyl parath	nion10.0	6.34	5.73	63	57	30-125	10.0	<32
Atrazine       2.0       1.89       1.95       95       98       NC       3.1       NC         Simazine       2.0       2.0       2.07       100       104       NC       3.9       NC         Carbofuran       10.0       11.5       10.3       115       103       73-116       11.0       <20		Ethion	10.0	5.94	5.24	59	52	31-142	12.0	<18
Simazine         2.0         2.0         2.07         100         104         NC         3.9         NC           Carbofuran         10.0         11.5         10.3         115         103         73-116         11.0         <20		Atrazine	2.0	1.89	1.95	95	98	NC	3.1	NC
Carbofuran 10.0 11.5 10.3 115 103 73-116 11.0 <20 Bentazon 10.0 8.60 9.0 86 90 65-120 4.5 <30 Nudr in 20.0 18.1 18.5 90 92 52-118 2.2 <37 (Wethomy1) Tr i for ine 200.0 196.0 193.0 98 96 51-127 2.1 <33 <b>by HPLC</b> Carbary1 20.0 22.6 21.1 113* 106 62-111 6.4 <29 Propham 20.0 18.3 19.4 92 97 57-122 5.3 <41 08/25/88 0rdram 4.0 3.57 3.47 89 87 45-110 2.3 <30 Bolero 4.0 3.79 3.68 95 92 55-110 3.2 <30 (Thiobencarb) Dinoseb 50.0 61.8 63.4 124 127 75-125 2.4 <20 2,4-0 1.0 1.02 0.920 102 92 75-125 10.0 <20 Gamma-BHC 0.200 0.156 0.144 78 72 56-123 8.0 <15 (Lindane) Dieldr in 0.500 0.412 0.421 82 84 52-126 2.4 <18 Heptachlor 0.200 0.146 0.130 73 65 40-131 12.0 <20 Aldr in 0.500 0.412 0.421 82 84 52-126 2.4 <18 Heptachlor 0.200 0.146 0.130 73 65 40-131 12.0 <20 Aldr in 0.500 0.426 0.453 85 91 56-121 6.8 <21 4,4'DDT 0.500 0.426 0.453 85 91 56-121 6.8 <21 4,4'DDT 0.500 0.296 0.306 59 61 38-127 3.3 <27 Diazinon 10.0 8.07 7.33 81 73 26-126 10.0 <28 Ethyl Parathion1.0 8.31 7.48 83 75 30-125 10.0 <28 NA = Not Applicable NC = Not Calculated * = Recovery Outside Standard 0C Limits		Simazine	2.0	2.0	2.07	100	104	NC	3.9	NC
Bentazon         10.0         8.60         9.0         86         90         65-120         4.5         <30           Nudr in         20.0         18.1         18.5         90         92         52-118         2.2         <37		Carbofuran	10.0	11.5	10.3	115	103	73-116	11.0	<20
Nudr in (Methony I) Tr i for ine         20.0         18.1         18.5         90         92         52-118         2.2         <37           by HPLC Carbary I         200.0         196.0         193.0         98         96         51-127         2.1         <33		Bentazon	10.0	8.60	9.0	86	90	65-120	4.5	<30
(Wethomy1) Triforine 200.0 196.0 193.0 98 96 51-127 2.1 <33 by HPLC Carbary1 20.0 22.6 21.1 113* 106 62-111 6.4 <29 Propham 20.0 18.3 19.4 92 97 57-122 5.3 <41 08/25/88 Ordram 4.0 3.57 3.47 89 87 45-110 2.3 <30 Bolero 4.0 3.79 3.68 95 92 55-110 3.2 <30 (Thiobencarb) Dinoseb 50.0 61.8 63.4 124 127 75-125 2.4 <20 2,4-0 1.0 1.02 0.920 102 92 75-125 10.0 <20 Gamma-BHC 0.200 0.156 0.144 78 72 56-123 8.0 <15 (Lindane) Dieldrin 0.500 0.412 0.421 82 84 52-126 2.4 <18 Heptachlor 0.200 0.146 0.130 73 65 40-131 12.0 <20 Aldrin 0.500 0.418 0.139 74 70 40-120 5.6 <22 Endrin 0.500 0.426 0.453 85 91 56-121 6.8 <21 4,4'DDT 0.500 0.426 0.453 85 91 56-121 6.8 <21 4,4'DDT 0.500 0.426 0.453 85 91 56-121 6.8 <21 4,4'DDT 0.500 0.426 0.453 85 91 56-121 6.8 <21 Aldrin 0.5		Nudr in	20.0	18.1	18.5	90	92	52-118	2.2	<37
Triforine         200.0         196.0         193.0         98         96         51-127         2.1         <33           by HPLC         Carbaryl         20.0         22.6         21.1         113*         106         62-111         6.4         <29           Propham         20.0         18.3         19.4         92         97         57-122         5.3         <41           08/25/88         Ordram         4.0         3.57         3.47         89         87         45-110         2.3         <30           08/25/88         Ordram         4.0         3.57         3.47         89         87         45-110         2.3         <30           OB/ero         4.0         3.79         3.68         95         92         55-110         3.2         <30           (Thiobencarb)         Dinoseb         50.0         61.8         63.4         124         127         75-125         2.4         <20           2,4-D         1.0         1.02         0.920         102         92         75-125         10.0         <20           Gamma-BHC         0.200         0.144         78         72         56-123         8.0         <15      <		(Methomyl)								
by HPLC         Carbaryl         20.0         22.6         21.1         113*         106         62-111         6.4         <29           Propham         20.0         18.3         19.4         92         97         57-122         5.3         <41		Triforine	200.0	196.0	193.0	98	96	51-127	2.1	<33
Carbaryl         20.0         22.6         21.1         113*         106         62-111         6.4         <29           Propham         20.0         18.3         19.4         92         97         57-122         5.3         <41		by HPLC								
Propham         20.0         18.3         19.4         92         97         57-122         5.3         <41           08/25/88         Ordram         4.0         3.57         3.47         89         87         45-110         2.3         <30		Carbaryl	20.0	22.6	21.1	113*	106	62-111	6.4	<29
08/25/88         Ordram         4.0         3.57         3.47         89         87         45-110         2.3         <30           Bolero         4.0         3.79         3.68         95         92         55-110         3.2         <30		Propham	20.0	18.3	19.4	92	97	57-122	5.3	<41
Bolero       4.0       3.79       3.68       95       92       55-110       3.2       <30	08/25/88	Ordram	4.0	3.57	3.47	89	87	45-110	2.3	<30
(Thiobencarb) Dinoseb 50.0 61.8 63.4 124 127 75-125 2.4 <20 2,4-D 1.0 1.02 0.920 102 92 75-125 10.0 <20 Gamma-BHC 0.200 0.156 0.144 78 72 56-123 8.0 <15 (Lindane) Dieldrin 0.500 0.412 0.421 82 84 52-126 2.4 <18 Heptachlor 0.200 0.146 0.130 73 65 40-131 12.0 <20 Aldrin 0.200 0.148 0.139 74 70 40-120 5.6 <22 Endrin 0.500 0.426 0.453 85 91 56-121 6.8 <21 4,4'DDT 0.500 0.296 0.306 59 61 38-127 3.3 <27 Diazinon 10.0 8.07 7.33 81 73 26-126 10.0 <26 Ethyl Parathion10.0 8.31 7.48 83 75 30-125 10.0 <32 NA = Not Applicable NC = Not Calculated * = Recovery Outside Standard QC Limits		Bolero	4.0	3.79	3.68	95	92	55-110	3.2	<30
Dinoseb         50.0         61.8         63.4         124         127         75-125         2.4         <20           2,4-D         1.0         1.02         0.920         102         92         75-125         10.0         <20		(Thiobencarb	)							
2,4-D 1.0 1.02 0.920 102 92 75-125 10.0 <20 Gamma-BHC 0.200 0.156 0.144 78 72 56-123 8.0 <15 (Lindane) Dieldrin 0.500 0.412 0.421 82 84 52-126 2.4 <18 Heptachlor 0.200 0.146 0.130 73 65 40-131 12.0 <20 Aldrin 0.200 0.148 0.139 74 70 40-120 5.6 <22 Endrin 0.500 0.426 0.453 85 91 56-121 6.8 <21 4,4'DDT 0.500 0.296 0.306 59 61 38-127 3.3 <27 Diazinon 10.0 8.07 7.33 81 73 26-126 10.0 <26 Ethyl Parathion10.0 8.31 7.48 83 75 30-125 10.0 <32 NA = Not Applicable NC = Not Calculated * = Recovery Outside Standard QC Limits		Dinoseb	50.0	61.8	63.4	124	127	75-125	2.4	<20
Gamma-BHC       0.200       0.156       0.144       78       72       56-123       8.0       <15		2,4-D	1.0	1.02	0.920	102	92	75-125	10.0	<20
(Lindane) Dieldrin 0.500 0.412 0.421 82 84 52-126 2.4 <18 Heptachlor 0.200 0.146 0.130 73 65 40-131 12.0 <20 Aldrin 0.200 0.148 0.139 74 70 40-120 5.6 <22 Endrin 0.500 0.426 0.453 85 91 56-121 6.8 <21 4,4'DDT 0.500 0.296 0.306 59 61 38-127 3.3 <27 Diazinon 10.0 8.07 7.33 81 73 26-126 10.0 <26 Ethyl Parathion10.0 8.31 7.48 83 75 30-125 10.0 <32 NA = Not Applicable NC = Not Calculated * = Recovery Outside Standard QC Limits		Gamma-BHC	0.20	0.156	0.144	78	72	56-123	8.0	<15
Dieldrin         0.500         0.412         0.421         82         84         52-126         2.4         <18           Heptachlor         0.200         0.146         0.130         73         65         40-131         12.0         <20		(Lindane)								
Heptachlor         0.200         0.146         0.130         73         65         40-131         12.0         <20           Aldrin         0.200         0.148         0.139         74         70         40-120         5.6         <22		Dieldrin	0.50	0.412	0.421	82	84	52-126	2.4	<18
Aldrin       0.200       0.148       0.139       74       70       40-120       5.6       <22		Heptachlor	0.20	0.146	0.130	73	65	40-131	12.0	<20
Endrin         0.500         0.426         0.453         85         91         56-121         6.8         <21           4,4'DDT         0.500         0.296         0.306         59         61         38-127         3.3         <27		Aldrin	0.200	0.148	0.139	74	70	40-120	5.6	<22
4,4'DDT       0.500       0.296       0.306       59       61       38-127       3.3       <27		Endrin	0.500	0,426	0,453	85	91	56-121	6.8	<21
Diazinon         10.0         8.07         7.33         81         73         26-126         10.0         <26           Ethyl         Parathion10.0         8.31         7.48         83         75         30-125         10.0         <32		4.4'DDT	0.500	0,296	0.306	59	61	38-127	3.3	<27
Ethyl Parathion 10.0 8.31 7.48 83 75 30-125 10.0 <32 NA = Not Applicable NC = Not Calculated * = Recovery Outside Standard QC Limits		Diazinon	10.0	8.07	7.33	81	73	26-126	10.0	<26
NA = Not Applicable NC = Not Calculated * = Recovery Outside Standard QC Limits		Ethyl Parath	ion 10.0	8.31	7.48	83	75	30-125	10.0	<32
	NA = Not	Applicable	NC	= Not Ca	Iculated		* = Recovery	Outside St	andard	QC Limits

or RPD outside QC limits

		Conce	ntration	(ug/L)		Accuracy (2	3)	Precis	ion (RPD)
Date	Chemical	Spiked	Test 1	Test 2	Test	1 Test 2	Limits	LCS	Limits
00 /25 /00	Ethion	10.0	0.04	C 07	00	70	21 142	10.0	10
00/20/00	Atrazina	2.0	0.24	1.74	02	70	31-142	0.0	<10
	Atrazine	2.0	1.79	1.74	90	87	NC	3.4	NG
	Simazine	2.0	1.85	1.79	93	90	NC	3.3	NU
	Urthene	50.0	NA	NA DO F	NA	NA	NC	NA	NU
	(Monitor)	\$ 50.0	30.3	30.5	bl	ы	NC	U	NC
	Carbofuran (Furadan)	10.0	8.80	10.1	88	101	73-116	14.0	<20
	Bentazon	10.0	8.60	7.63	86	76	65-120	12.0	<30
	Bentazon	10.0	9.98	8.94	100	89	65-120	12.0	<30
	Carbaryl (Sevin)	10.0	8.40	8.0	84	80	62-111	4.9	<29
	Propham	10.0	9.10	9.0	91	90	57-122	1.1	<41
	Nudrin (Methomyl)	10.0	7.60	7.40	76	74	52-118	2.7	<37
	Triforine	100.0	NA	NA	NC	NC	51-127	NC	<33
	Propani I	1.0	0.792	0.789	79	79	NC	0	NC
	Alachlor	1.0	0.926	0.949	93	95	NC	1.1	NC
08/30/89	Alachior	2.0	2.23	2.03	112	102	NC	9.0	NC
	Propanil	2.0	1.69	1.71	85	86	NC	2.0	NC
	Orthene	50.0	NA	NA	NA	NA	NC	NA	NC
	Methamidophos (Monitor)	50.0	29.1	28.3	58	57	NC	1.7	NC
	Atrazine	2.0	1.36	1.44	68	72	NC	5.7	NC
	Simazine	2.0	1.45	1.53	73	77	NC	5.3	NC
	Ordram	4.0	3.38	3.02	84	76	45-110	10.0	<30
	Bolero	4.0	3.86	3.52	96	88	55-110	8.7	<30
	Dinoseb	50.0	72.0	73.6	144*	147*	75-125	2.0	<20
	2,4-D	1.0	1.04	1.25	104	125	75-125	18.0	<20
	Diazinon	10.0	8.83	10.4	88	104	26-126	17.0	<26
	Ethyl parathi	on10.0	9.38	10.8	94	108	30-125	14.0	<32
	Methyl para.	10.0	9.41	10.9	94	110	31-142	16.0	<18
	Carbofuran	10.0	11.5	10.3	115	103	73-116	11.0	<20
	Bentazon	10.0	8.60	9.0	86	90	65-120	4.5	<30
	Carbaryl	20.0	14.2	14.8	71	74	62-111	4.2	<29
	Propham	20.0	12.9	12.8	64	64	57-122	0.0	<41
	Nudrin	20.0	13.4	12.5	67	62	52-118	7.8	<37
	Triforine	200	133	139	66	70	51-127	5.9	<33

# TABLE C-4 (Enseco cont.)

NA = Not Applicable NC = Not Calculated * = Recovery Outside Standard QC Limits or RPD outside QC limits

No. of Lot of Lo

and the second

and the second se

Sector Sector

Concession of the local division of the loca

Ĩ

and and

and and a

1

#### TABLE C-5 Quality Control/Quality Assurance Trihalomethane Interlaboratory Comparison (Samples Distributed 1-20-88)

Laboratory	CHC 13	CHBrC12	CHBr2CI	CHBr 3	Total	Average % Deviation*
EBMUD	130	170	190	60	550	
	130	170	180	59	540	
	130	170	190	63	550	
	130	170	200	64	560	
Average	130	170	190	62	550	
Standard Deviation	0	0	7	2	7	
Percent Deviation						
from Overall Average	-6	-3	-2	9		5
CAL ANALYTICAL	130	170	170	57	527	
	110	160	160	57	487	
	130	170	160	49	519	
	140	180	170	50	540	
Average	128	170	168	53	518	
Standard Deviation	11	7	4	4	20	
Percent Deviation						
from Overall Average	-8	-3	-13	-7		8
		010	220	60	640	
DWR - BRYTE	140	210	230	61	670	
	150	220	240	01	070	
Average	145	215	235	61	655	
Standard Deviation	5	5	5	1	15	
Percent Deviation				-		14
from Overall Average	a 4	22	22	1		14

 $\ast$  - Average % deviation is an average of the 4 species "percent deviations" without consideration of their

algebraic signs.

100

ž

Colored and

#### TABLE C-5 (Continued) Quality Control/Quality Assurance Trihalomethane Interlaboratory Comparison (Samples Distributed 1-20-88)

in the second

and and a second

Number of Street, or other

No. of Lot, No.

The second

THE OWNER

and and

1

Laboratory	CHC 13	CHBrCI 2	CHBr 2C1	CHBr 3	Total	Average %
Deviation						
DOHS	130	160	180	50	520	
-	130	170	190	48	540	
	130	160	180	47	520	
	120	160	180	47	510	
	130	160	190	48	530	
Average	128	162	180	50	522	
Standard Deviation	4	4	5	1	10	
Percent Deviation						
from Overall Average	-8	-8	-5	-16		9
CLAYTON	180	180	200	64	620	
oc/11 ton	150	150	180	59	540	
(Trip Blank)	ND	ND	ND	ND	ND	
Average	165	165	190	62	582	
Standard Deviation	15	15	10	3	40	
Percent Deviation						
from Overall Average	19	-6	-2	9		9
Overall Average (Exclusive of Trip Blank)	139	176	193	57	565	

* - Average % deviation is an average of the 4 species "percent deviations" without consideration of their

algebraic signs.

# Appendix D

## THM HOLDING TIME STUDY

EPA methods specify a two week holding time for all volatiles, including trihalomethanes. A review of laboratory QC revealed that one of our contract laboratories had held some THM samples up to seven weeks (see Appendix C). Normally, we would have rejected the data. However, in this case, it represented a significant fraction of the total data set.

A comparison of the data in question with data where the holding times were not violated revealed no apparent differences. All of the data appeared to be consistent according to station an time of year.

DWR consulted with our chemists at Bryte Laboratory and with representatives from the Department of Health Services, and with Enseco, Inc. The consensus was that the holding times specified in EPA methods were not based on actual studies, rather were set for entire classes of chemicals. Therefore, permissible holding times for THM's might be longer than the specified two weeks provided that the samples were stored properly.

Based on this preliminary assessment. DWR contacted Enseco Labs, Inc. and requested their assistance in conducting a holding time study for THMs. DWR Bryte Laboratory also agreed to participate in the study. Working with the two laboratories, the following protocol was developed.

#### THM HOLDING TIME PROTOCOL

Three and a half gallons of water from the station at Harvey O. Banks Pumping Plant were collected and filtered through a 45 m Millipore filter.

The water was transported to the DWR Bryte Laboratory and spiked to exactly 100 mg/L  $Cl_2$  and incubated for seven days in a separatory funnel with no head space. After incubation, the water was quenched in bulk with sodium thiosulfate, and mixed thoroughly. The water was collected, spiked, and quenched in bulk in order to minimize sample-to-sample variations.

The quenched water was then dispensed from the bottom of the separatory funnel into 40 ml vials. Since some the volatile THMs might be lost to the increasing head space in the separatory funnel (and to the air in the laboratory) during the transfer process, there was the potential that the concentration of THMs in the last bottle filled would be slightly less than in the first. In order to compensate for this potential systematic loss during the transfer process, the vials were filled, and placed randomly into holding trays. Enough vials were prepared for an eight week study, one set for immediate analysis. Eighteen samples (54 vials) were sent to Enseco for analysis.

Both laboratories refrigerated the bottles, and handle them normally, as if they were normal THM samples, except for the extended holding times.

The first samples were to be analyzed as soon as possible, the remainder analyzed at a rate of two samples each 7 days, at days 7, 14, 21, 28, 35, 42, 49, and 56 (eight weeks). Bottles were selected at random for analysis.

Enseco, Inc. included duplicate control samples in their quality assurance procedures. DWR Bryte included surrogate recovery samples. Both types of samples are used as a check for accuracy and precision.

There were a few deviations from the weekly analysis of samples. The first analyses were conducted (on a single sample) by Bryte on March 12, 1990 (day 0). Enseco conducted its first analyses on day 3. Bryte was unable to analyzed the samples on day 21. Bryte did not analyze the samples on day 56, but analyzed them on day 59, and analyzed a single sample on day 60.

Enseco analyzed the samples according to a modified the EPA Method 601; the same method that they had used when they were under contract to DWR. Bryte laboratory analyzed their samples according to a modified EPA method 502.2.

Both methods use a purge and trap method of extraction. However, Method 601 calls for use of a packed column and a halide specific detector. Method 502.2 calls for use of a capillary column and photoionization detector in series with an electric conductivity detector. The accuracy interval for Method 601 as used by Enseco was 80-125%, whereas the specified range is 80-120% for Method 502.2.

Use of two different methodologies was seen as a drawback, however it was felt that both methods should be capable of detecting real losses of analyte over time. Bryte's analyses, based on Method 502.2, were expected to be more sensitive than Enseco's because of the improved methodology in EPA method 502.2.

Data collected in this study and QA/QC results are summarized at the end of this appendix in Tables D-7 through D-10.

#### RESULTS

Statistical analysis of the data were performed with the aid of a statistical program called Statgraphics (no endorsement is implied). The data indicate that the holding time had little or no effect on the concentrations of the individual trihalomethanes. Figure D-1¹ is a graph of weekly average THM precursor concentrations vs time. Although the analyses varied from week to week, there is little discernable slope.

In many cases, analyses of the precursors appeared to increase or decrease together. For example the analyses for CHCl₃, CHCl₂Br, CHClBr₂, CHBr₃, all appear to decrease on day 28. This may be an artifact of variations in methodology, or other systematic source of variability. One possible factor was that Enseco used a different lot for it's

¹ Analyses for days 0 and 3 (week 0) and for days 56 and 59 (week 8) are grouped together because of graphics software limitations. There was <u>no</u> grouping of data for the statistical analyses shown in Tables 1 through 6.



Figure D-1

Concentration ug/L

T.



Figure D-2

Table D-1

# Statistical Comparison of ${\rm CHCL}_3$ Analyses

		Two-Samp	le Analysis Re	sults	
Sample	Statistics:	Number of Obs. Average Std. Deviation	Enseco 18 392.222 34.3949	Bryte 16 417.5 33.7639	Combined 34 404.118 34.1005

Difference between Means = -25.2778

ALC: NO

Contraction of the local division of the loc

Concession of the local division of the loca

Contraction of the local distribution of the

10000

E delaid

Contraction of the local distance

6 and and

Hypothesis	Test	for	HO: Diff =	0	Computed t statistic =	-2.15742
2.2			vs Alt:	NE	Sig. Level = $0.0385866$	
			at Alpha =	0.05	so reject HO.	

## Regression Analysis - Linear model: Y = a+bXCHCL₃ vs Day

Lab	Parameter	Estimate	Standard Error	T Value	Prob. Level
Combined	Intercept	407.226	12.0153	33.8923	.00000
	Slope	-0.101732	0.335803	-0.30295	.76389
Enseco	Intercept	384.85	15.7038	24.5068	.00000
	Slope	0.260192	0.470997	0.552428	.58829
Bryte	Intercept	437.558	16.0984	27.1802	.00000
	Slope	-0.606657	0.419888	-1.44481	.17052



Figure D-3

Contract of the

#### Table D-2

# Statistical Comparison of CHCL₂Br Analyses

Two-Sample Analysis Results

	Enseco	Bryte	Combined
Sample Statistics: Number of Obs.	18	16	34
Average	126.611	155.625	140.265
Std. Deviation	19.7845	19.3111	19.564

.

Difference between Means = -29.0139

And a lot of the

1111

Contraction of the local division of the loc

0.000

Ĩ

Constanting of the

No. of Concession, Name

Contraction of the second

1

Hypothesis	Test	for	HO: Diff =	0	Computed t statistic = -4.31623
			vs Alt:	NE	Sig. Level = 1.42945E-4
			at Alpha =	0.05	so reject HO.

Regression Analysis - Linear model: Y = a+bXCHCL₂Br vs Day

Lab	Parameter	Estimate	Standard Error	T Value	Prob. Level
Combined	Intercept	149.483	7.88567	18.9563	.00000
	Slope	-0.301657	0.220388	-1.36875	.18061
Enseco	Intercept	128.546	9.10107	14.1243	. 00000
	Slope	-0.0682854	0.272964	-0.250163	.80565
Bryte	Intercept	179.401	6.56639	27.3212	. 00000
	Slope	-0.719136	0.171268	-4.19888	.00089



Trihalomethane Holding Time Experiment

CHCl2Br (ug/L)

10 4 1 0 7 14 21 28 35 56 42 49 60 Day CHCl2Br - Enseco #1 CHCl2Br - Bryte #1 + $\diamond$ CHCl2Br - Enseco #2 CHCl2Br - Bryte #2  $\Delta$ 

Figure D-4

standard on day 28, than for the remainder of the test. Perhaps by coincidence, the Bryte analyses were also lower than average on that date.

When the individual analyses are divided by the total THM's for that sample, and expressed as percent of total THMs, much of the variability from date to date is reduced (Figure D-2). This tends to support the idea that much of the variance seen is due to a systematic variability in the analyses.

Statistical analyses was performed for each of the THMs and for each of the laboratories. For each THM, there were 18 analyses provided by Enseco, and 16 provided by Bryte. The difference in the number of analyses is due to the fact that Bryte analyzed only one sample (instead of two) on day zero, none on day 21 and provided an extra analysis on day 60 (not in the original plan).

### cHCl₃

Enseco reported an average 392  $g/L_CHCl_3$  (Table D-1, Figure A-3), Bryte reported an average 417 g/L. Combined, the average was 404 g/L. The standard deviation (s.d.) for all three averages was 34 g/L. Analysis of the means revealed that the 25 g/L difference between the means was significant at the 95% confidence level.

Regression analysis of CHCl₃ vs time showed a slight positive trend for the Enseco analyses and a slight negative trend for the Bryte analyses. Neither slope was significantly different from zero at the 95% probability level.

## CHCl₂Br

Enseco reported an average 127  $g/L_CHCl_2Br$  (s.d. 20 g/L) (Table D-2, Figure D-4) Bryte reported an average 156 g/L (s.d. 19 g/L). The combined average was 140 g/L (s.d. 20 g/L). Analysis of the means revealed that the 29 g/L difference between the means was significant at better than the 99.9% confidence level.

Regression analysis of CHCl₂Br data versus time showed a slight negative trend for both laboratories. The slope for the Enseco analyses was not significant at the 95% level. The Bryte analyses showed a loss of approximately 0.7 .g/L per day (0.4%/day), significant at the 95% level. However the combined data showed no significant slope.

#### CHClBr₂

The Enseco analysis of both CHClBr₂ and of CHBr₃ showed a high variability. Enseco reported an average 47 g/L CHClBr₂ (s.d. 9.1 g/L) (Table D-3, Figure D-5) Bryte reported an average 55 g/L (s.d. 4.1 g/L). The combined average was 50 g/L (s.d. 7.3 g/L). Analysis of the means revealed that the 8 g/L difference between the means exceeded the 99% confidence level.

Regression analysis of the CHClBr₂ data versus time showed a slight negative trend for both laboratories. The slope for the Enseco analyses was not significant at the 95% level. The Bryte analyses showed a loss of approximately 0.15 g/L per day (0.25%/day), significant at the 95% level. However the combined data showed no significant slope.

# Table D-3

Stat istical Comparison of CHCIBr₂ Analyses

Two-Sample Analysis Results

		Enseco	Bryte	Combined
Sample Statistics:	Number of Obs. Average Std. Deviation	18 46.6667 9.17157	16 54.5625 4.14679	34 50.3824 7.26279
Difference between	Means = -7.89583			

Hypothesis	Test	for	HO: Diff =	0	Computed t statistic = $-3.16411$
			vs Alt:	NE	Sig. Level = $3.40106E-3$
			at Alpha =	0.05	so reject HO.

Regression Analysis - Linear model: Y = a+bXCHCIBr₂ vs Day

1111

The state of the s

Survey of the local division of the local di

and and

B. Cantorna

Statute of

No. of Concession, Name

ana ana

Real Property

			Standard	т	Prob.
	Parameter	Estimate	Error	Value	Level
Combined	Intercept	52.4041	2.71149	19.3267	. 00000
	Slope	-0.0661606	0.0757806	-0.873054	.38914
Enseco	Intercept	47.6502	4.21734	11.2986	.00000
	Slope	-0.0347122	0.126488	-0.27443	.78727
Bryte	Intercept	59.5121	1.46251	40.6918	. 00000
	Slope	-0.149705	0.038146	-3.92453	.00153
			The second se		



Figure D-5

CHCIBr2 (ug/L)

# Table D-4

Support of the local division of the local d

and the second

Statistical Comparison of  ${\rm CHBr}_{3}$  Analyses

Two-Sample Analysis Results

		Enseco	Bryte	Combined
Sample Statistics	: Number of Obs.	18	16	34
	Average	6.08889	2.74375	4.51471
	Std. Deviation	2.57611	0.244864	1.88512
Difference betwee	n Means = 3.34514			
Hypothesis Test f	or HO: Diff = 0	Computed t	statistic = 4	5.16456
	VS AIT: NE	Sig. Level	= 1.2313E-5	
	at Alpha = 0.05	so reject	но.	
	Regression Analysi	s - Linear mo	odel: Y = a+bX	

Regression	Allalysis -	Linear	model:	-	atun	
	CHBr ₃	vs Day				

			Standard	т	Prob.
Lab	Parameter	Estimate	Error	Value	Level
Combined	Intercept	4.28738	0.840249	5.10251	. 00001
	Slope	7.4391E-3	0.0234832	0.316783	.75347
Enseco	Intercept	4.74781	1.11989	4.23955	. 00062
	Slope	0.0473321	0.0335882	1.40919	.17792
Bryte	Intercept	2.97157	0.103332	28.7576	. 00000
	Slope	-6.89072E-3	2.69516E-3	-2.55671	.02282



Figure D-6

# (J∕gu) CHBr3

# Table D-5

Country of the local division of the local d

State of the local division of the local div

Station of

State of the local division of the local div

Contraction of the local division of the loc

The second

である

and a second

1

-

# Statistical Comparison of THMFP

Two-Sample Analysis Results

Sample St	atistics: Num Ave Std	ber of Obs. rage . Deviation	Enseco 18 571.589 55.8271	Bryte 16 630.431 51.3111	Combined 34 599.279 53.7575
Difference	e between Mea	ns = -58.8424			
Hypothesi	s Test for HO at	: Diff = 0 vs Alt: NE Alpha = 0.05	Computed t Sig. Level so reject ł	statistic = - = 3.21441E-3 40.	3.18572
	Reg	ression Analysi TH	s — Linear mo MFP vs Day	del: Y = a+bX	
			Standard	т	Prob
Lab	Parameter	Estimate	Error	Valu	e Leve
Combined	Intercept	613.401	20.1295	30.472	8 .00000
	Slope	-0.46211	0.562578	-0.82141	5.41749

Lab	Parameter	Estimate	Error	Value	Level
Combined	Intercept	613.401	20.1295	30.4728	.00000
	Slope	-0.46211	0.562578	-0.821415	.41749
Enseco	Intercept	565.794	25.6746	22.0371	.00000
	Slope	0.204526	0.770046	0.265603	.79394
Bryte	Intercept	679.443	21.3786	31.7814	.00000
	Slope	-1.48239	0.557609	-2.65847	.01872
# CHBr₃

Enseco reported an average 6.1  $g/L_CHBr_3$  (s.d. 2.6 g/L) (Table D-4, Figure D-6) Bryte reported an average 2.7 g/L (s.d. 0.2 g/L). The combined average was 4.5 g/L (s.d. 1.9 g/L). Analysis of the means revealed that the 3.3 g/L difference between the means exceeded the 99.9% confidence level.

Regression analysis of the CHBr_{3 d}ata versus time showed a slight positive trend for Enseco and both laboratories combined. The slopes for the Enseco analyses and combined analyses were not significant at the 95% level. The Bryte analyses showed a loss of approximately .007 g/L per day (0.2%/day), significant at the 95% level.

## THMFP

THMFP is the sum of the four THMs. THMFP is used for most of the interpretive analysis found in this report. A comparison of the mean THMFP reported by the two laboratories shows that Bryte reported an average 630 g/L (s.d. 51 g/L), Enseco reported and average 571 g/L (s.d. 56 g/L), and that the combined average THMFP was 599 g/L (s.d. 54 g/L) (Table D-5). The 59 g/L difference between the two laboratories was significantly above the 99% confidence level. Regression analysis of THMFP versus time showed a slight negative trend for Enseco and combined data. The Bryte THMFP showed a loss of approximately 1.5 g/L per day (0.2%/day), significant at the 95% level.

#### Table D-6

тнм	Starting Concentration (Intercept)	Loss Per Day L ( g/L/day)	Standard Deviation s (g/L)	Estimated Holding Time Limit ² 3s/L		
CHCI3	437	no significant loss	34	not determined		
CHC I 2Br	179	0.72	19.3	80 days		
CHCIBr ₂	59.5	0.15	4.1	82 days		
CHBr ₃	3.0	.007	0.24	103 days		

#### Estimation of Holding Time Limits Based on Bryte Results

2

Based on John K. Taylor, Quality Assurance of Chemical Measurements, c.1987, Lewis Publishers, Inc.

# HOLDING TIME CALCULATIONS

Holding time estimates were calculated based on the methodology described in "Quality Assurance of Chemical Measurements" c.1987, by John K. Taylor. According to Taylor, the acceptable holding time (with 95% confidence) equals the period necessary for the concentration of the sample to change by 3 standard deviations (3s). This was calculated by comparing the calculated slope of the concentration to the calculated standard deviation.

Holding time estimates for this study were based entirely on Bryte analyses, since only those analyses showed a statistically significant loss over the period of the experiment. Calculated holding time estimates are summarized in table D-6.

Estimated holding time 1 imits for CHCL₃ could not be determined in this study. However, they exceed the 49 day holding time in our field data. Estimated holding times for CHCl₂Br and CHClBr₂ are approximately 80 days. The holding time for CHClBr₃ may exceed 100 days.

## DISCUSSION

The holding time experiment shows some significant differences between the different analytical protocols used, and perhaps some differences between the two participating laboratories. The modified EPA Method 502.2 used by Bryte laboratory appears to provide more consistent, less variable results, particularly for CHCl₂Br and _CHBr₃. Also, except for CHBr₃, Bryte reported higher average concentrations than Enseco. The average CHBr₃ reported by Enseco was higher, but the variance (as expressed by s.d.) exceeded the average. As we begin to take a more careful look at bromides in the Delta, EPA Method 502.2 will provide us with the best data.

As for the effect of holding time on THM's, the results vary by laboratory. There is no measurable loss of  $CHCL_3$  over the period of the holding time experiment. However, we were able to measure a loss of brominated THMs over time.

When the Bryte analyses are considered alone, all of the brominated THM's appear to be losing from 0.2 to 0.4% per day. The calculated holding times for CHCl₂Br and CHClBr₂ were about 80 d ays, and for CHBr₃ about 100 days. Analysis for THMFP sould be limited to an 80 day holding period.

#### CONCLUSIONS

The primary objective of this holding time experiment was to validate or reject analytical results from samples which were held up to 49 days, as compared to the established 14 dy EPA holding time protocol for THM analyses. This study showed that holding times up to 80 days are permissible for analysis of THMFP. Therefore the analytical results which were held up to 49 days are valid.

DWR will continue to follow the recommended holding times specified by EPA Methodology. However, in cases where holding time requirements are unavoidably exceeded, samples held up to 80 days should produce valid data, as long as the samples are properly stored, as defined by EPA protocol.

1

Table	D-7	THM	Holding	Time	Data
		Units:	µg/L		

THM	Lab/Sample	Day O	3	7	14	21	28	35	42	49	56	59	60
CHCI3	Enseco I		3/0*	400	390	410	320	380	480	350	400*		
	Enseco Z	400	300*	400	400	420	3/0	410	430	380	390*	260#	201
	Bryte 1	400	5) 	440	450		270	440	450	420		460*	270
	Bryte Z		2778	400	400	415	260	400	440	402	290*	400	30
	Avg. High		3/1-	423	410	410	380	450	440	405	400*		30
	low		*00*	400	300	420	320	380	400	350	360*		30
	Low Brute Ave		400*	400	440	410	375	445	135	440	365*		30
	Enseco Avg	ş	365*	400	395	415	345	395	455	365	395*		000
CHC1_Br	Enseco 1		110*	140	150	160	100	140	130	110	130*		
2	Enseco 2		110*	110	130	160	99	140	130	100	130*		
	Bryte 1	180*		180	180		130	160	150	150		130*	15
	Bryte 2			190	170		130	150	157	150		140*	
	Avg.		133*	155	158	160	115	148	142	128	133*		15
	High		180*	190	180	160	130	160	157	150	140*		15
	Low		110*	110	130	160	99	140	130	100	130*		15
	Bryte Avg		180*	185	175		130	155	153.5	150	135*		15
	Enseco Avg		110*	125	140	160	99.5	140	130	105	130*		
HC1Br ₂	Enseco 1		47*	51	54	63	29	54	44	43	51*		
-	Enseco 2		45*	39	45	62	29	50	43	40	50*		
	Bryte 1	61*		61	58		50	55	52	54		54*	51
	Bryte 2			61	58		48	54	51	54		51*	
	Avg.		51*	53	54	63	39	53	48	48	52*		51
	High		61*	61	58	63	50	55	52	54	54*		51
	Low		45*	39	45	62	29	50	43	40	50*		51
	Bryte Avg		61*	61	58	11 11	49	54.5	51.5	54	52.5*		51
	Enseco Avg		46*	45	49.5	62.5	29	. 52	43.5	41.5	50.5*		
HBr ₃	Enseco 1		7.6*	6	4.5	5.3	1.4	9.1	8.7	7.4	8.2*		
	Enseco Z		5.5*	5.3	5.1	3.8	1.0	8.0	12	8.2	5.7*	0.0*	
	Bryte I	3.1-		3.2	3		2.4	2.8	2.1	3		2.0-	2.5
	Bryte 2		E 48	2.0	2.9	4.6	2.5	2.8	2.1	2.1	4 7*	2.4-	0.5
	AVg.		J.4*	4.3	5.9	4.0	2.0	5.8	0.0	5.3	4./*		2.5
	High		7.0*	0.0	5.1	3.3	2.5	9.1	12.0	0.2	0.2		2.5
	LOW Bruthe Aug		3.1*	2.0	2.9	3.0	1.4	2.0	2.1	2.1	2.4		2.0
	Enseco Avg		6.6*	5.7	4.8	4.6	1.5	8.9	10.4	7.8	7.0*		2.5
otal	Enseco 1		535*	597	599	638	450	583	663	510	589*		
THMEP)	Enseco 2		521*	554	580	646	500	609	615	528	576*		
,	Brvte 1	644*		684	671		562	658	635	627		547*	596
	Bryte 2			704	681		551	657	651	667		563*	500
	Avg.		566*	635	633	642	516	627	641	583	569*		596
	High		644*	704	681	646	562	658	663	667	589*		596
	Low		521*	554	580	638	450	583	615	510	547*		596
	Bryte Ava		644*	694	676	00.50.70	556	657	643	647	555*		596
	E		E20#	576	500	642	ATE	FOR	620	E10	F00*		

Enseco Laboratory performed their first analyses on day 3, instead of day 0. Bryte Laboratory performed their last analyses on days 59 and 60. In order to simplify Figures 1 through 6 (caused by graphics software limitations), analyses for week 0 (days 0 and 3) and for week 8 (days 56 and 59) are grouped together. Missing values indicate that no analysis was performed. There was no grouping of data for the statistical analyses.

l

Signal Constant

#### Table D-8 THM Holding Time Data Units: Percent of Total THMFP

THM	Lab/Sample	Day O	3	7	14	21	28	35	42	49	56	59	60
CHC13	Enseco 1		69.2%	67.0	65.2%	64.2%	71.0%	65.2%	72.4%	68.6%	67.9%		
Č.	Enseco 2		69.2%	72.2	69.0%	65.0%	74.1%	67.4%	69.9%	71.9%	67.7%		
	Bryte 1	62.1%		64.3%	64.1%		67.6%	66.9%	67.7%	67.0%		65.9%	65.8%
	Bryte 2			64.0%	66.1%		67.2%	68.5%	67.6%	69.0%		65.7%	
	Avg.		66.8%*	66.9%	66.1%	64.6%	70.0%	67.0%	69.4%	69.1%	66.8%*	F.	65.8%
	High		69.2%*	72.2%	69.0%	65.0%	74.1%	68.5%	72.4%	71.9%	67.9%*	£:	65.8%
	Low		62.1%*	64.0%	64.1%	64.2%	67.2%	65.2%	67.6%	67.0%	65.7%*	E.	65.8%
	Bryte Avg		62.1%*	64.1%	65.1%		67.4%	67.7%	67.7%	68.0%	65.8%*	•	65.8%
	Enseco Avg		69.2%*	69.6%	67.1%	64.6%	72.6%	66.3%	71.2%	70.3%	67.8%*	r)	
CHC1_Br	Enseco 1		20.6%*	23.5%	25.1%	25.1%	22.2%	24.0%	19.6%	21.6%	22.1%*	5	
2	Enseco 2		21.1%*	19.8%	22.4%	24.8%	19.8%	23.0%	21.1%	18.9%	22.6%*	5 m	
	Bryte 1	27.9%*		26.3%	26.8%		23.1%	24.3%	23.6%	23.9%		23.8%*	25.2%
	Bryte 2			27.0%	25.0%		23.6%	22.8%	24.1%	22.5%		24.8%*	
	Avg.		23.2%*	24.2%	24.8%	24.9%	22.2%	23.5%	22.1%	21.7%	23.3%*		25.2%
	High		27.9%*	27.0%	26.8%	25.1%	23.6%	24.3%	24.1%	23.9%	24.8%*		25.2%
	Low		20.6%*	19.8%	22.4%	24.8%	19.8%	23.0%	19.6%	18.9%	22.1%*		25.2%
	Bryte Avg		27.9%*	26.7%	25.9%		23.4%	23.6%	23.9%	23.2%	24.3%*		25.2%
	Enseco Avg		20.9%*	21.6%	23.7%	24.9%	21.0%	23.5%	20.4%	20.2%	22.3%*		
CHC1Br.	Enseco 1		8.8%*	8.5%	9.0%	9.9%	6.4%	9.3%	6.6%	8.4%	8.7%*		
6	Enseco 2		8.6%*	7.0%	7.8%	9.6%	5.8%	8.2%	7.0%	7.6%	8.7%*		
	Brvte 1	9.5%*		8.9%	8.6%		8.9%	8.4%	8.2%	8.6%	-50,575	9.9%*	8.6%
	Bryte 2			8.7%	8.5%		8.7%	8.2%	7.8%	8.1%		9.1%*	
	Avg.		9.0%*	8.3	8.5%	9.7%	7.5%	8.5%	7.4%	8.2%	9.1%*		8.6%
	High		9.5%*	8.9	9.0%	9.9%	8.9%	9.3%	8.2%	8.6%	9.9%*		8.6%
	Low		8.6%*	7.0%	7.8%	9.6%	5.8%	8.2%	6.6%	7.6%	8.7%*		8.6%
	Bryte Ava		9.5%*	8.8	8.6%		8.8%	8.3%	8.0%	8.4%	9.5%*		8.6%
	Enseco Avg		8.7%*	7.8%	8.4%	9.7%	6.1%	8.7%	6.8%	8.0%	8.7%*		
CHBr,	Enseco 1		1.4%*	1.0%	0.8%	0.8%	0.3%	1.6%	1.3%	1.4%	1.4%*		
3	Enseco 2		1.1%*	1.0%	0.9%	0.6%	0.3%	1.4%	2.0%	1.6%	1.0%*		
	Bryte 1	0.5%*		0.5%	0.4%		0.4%	0.4%	0.4%	0.5%		0.5%*	0.4%
	Bryte 2			0.4%	0.4%		0.5%	0.4%	0.4%	0.4%		0.4%*	
	Avg.		1.0%*	0.7%	0.6%	0.7%	0.4%	1.0%	1.0%	1.0%	0.8%*		0.4%
	High		1.4%*	1.0%	0.9%	0.8%	0.5%	1.6%	2.0%	1.6%	1.4%*		0.4%
	Low		0.5%*	0.5%	0.4%	0.6%	0.3%	0.4%	0.4%	0.5%	0.5%*		0.4%
£	Bryte Avg		0.5%*	0.4%	0.4%		0.4%	0.4%	0.4%	0.4%	0.5%*		0.4%
	Enseco Avg		1.2%*	1.0%	0.8%	0.7%	0.3%	1.5%	1.6%	1.5%	1.2%*		
Total	Enseco 1		100.0%*	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%*		
(THMFP)	Enseco 2		100.0%*	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%*		
	Bryte 1	100.0%*	0.000 0.000	100.0%	100.0%		100.0%	100.0%	100.0%	100.0%	0.000.000	100.0%*	100.0%
	Bryte 2			100.0%	100.0%		100.0%	100.0%	100.0%	100.0%		100.0%*	
	Avg.		100.0%*	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100 02*	1001010	100 02
	High		100.0%*	100 .0%	100.0%	100.0%	100 0%	100.0%	100.0%	100 0%	100 0%*		100 0%
	Low		100.0%*	100 0%	100 0%	100.0%	100 0%	100 0%	100 0%	100 02	100 02*		100.0%
	Bryte Ava		100.0%*	100 0%	100 0%	1001.04	100 0%	100 0%	100 0%	100 0%	100.0%*		100.02
	Enseco Ava		100.02*	100.01	100.0%	100.02	100.0%	100.02	100.0%	100.0%	100.0%*		
	and our nig			100.00	100.04	100.04	100.04	100.04	100.00	100.04	100.04		

* Enseco Laboratory performed their first analyses on day 3, instead of day 0. Bryte Laboratory performed their last analyses on days 59 and 60. In order to simplify Figures 1 through 6 (caused by graphics software limitations), analyses for week 0 (days 0 and 3) and for week 8 (days 56 and 59) are grouped together. Missing values indicate that no analysis was performed. There was no grouping of data for the statistical analyses. A COLUMN

111

Contraction of the local division of the loc

Provide and

Constant of

## TABLE D-9 - SPIKED DUPLICATE ANALYSES FOR THM HOLDING TIME STUDY (Enseco, Inc.)

13				Concen	tration	µg/L	1	Accuracy	Precision (RPD)		
E.	Date	Day	Chemical	Spiked	Test 1	Test 2	Test 1	1 Test 2	2 Limits	LCS	Limits
	3/12/90	0	Chloroform	5.0	5 11	5 18	102	104	80-125	14	02
1	0/11/00		Bromodichloromethane	5.0	5 42	5.66	102	112	90-125	1 2	22
12			Dibromochloromothane	5.0	5.52	5.00	111	113	80-125	4.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
100			Bronoform	5.0	5.55	5.00	102	102	00-125	1.6	~~~~
103			bromotorm	5.0	5.10	5.06	103	102	00-125	1.0	~~~~
	3/16/90	4	Chloroform	10.0	9.87	9.92	99	99	80-125	0.5	<22
1.0			Bromodichloromethane	10.0	10.5	9.89	105	99	80-125	6.0	<22
-			Dibromochloromethane	10.0	10.1	10.2	101	102	80-125	1.0	02
			Bromoform	10.0	10.7	10.6	107	106	80-125	0.9	02
13			brombrornin.	10.0	10.1	10.0	101	100	00 120	0.0	
-	3/23/90	11	Chloroform	10.0	9.17	9.26	92	93	80-125	1.0	<22
			Bromodichloromethane	10.0	10.9	11.1	109	111	80-125	1.8	<22
13			Dibromochloromethane	10.0	10.9	12.0	109	120	80-125	9.6	<22
			Bromoform	10.0	10.7	11.6	107	116	80-125	8.1	<22
1	0.000.000	10		10.0							
13	3/30/90	18	Chloroform	10.0	9.18	9.00	92	90	80-125	2.0	<22
			Bromodichloromethane	10.0	11.0	10.7	110	107	80-125	2.8	<22
11			Dibromochloromethane	10.0	10.9	10.6	109	106	80-125	2.8	<22
13			Bromoform	10.0	11.2	10.8	112	108	80-125	3.6	<22
10112	4-6-90	25	Chloroform	5.0	4 58	4 55	92	91	80-125	07	02
12	10.00	20	Bromodichloromethane	10.0	10 4	10.3	104	103	80-125	1.0	02
			Dibromochloromethane	10.0	10.6	11 1	104	111	80-125	4.6	02
-			Bromoform	20.0	23.3	23.9	116	120	80-125	2.5	(22
123			bronororm	20.0	20.0	20.0	110	120	00 120	2.0	LL
	4/13/90	32	Chloroform	10.0	9.75	9.91	97	99	80-125	1.6	<22
13			Bromodichloromethane	10.0	10.2	10.5	102	105	80-125	2.9	<22
			Dibromochloromethane	10.0	10.1	10.2	101	102	80-125	1.0	<22
1			Bromoform	10.0	9.49	10.6	95	106	80-125	11	<22
11											
1014	4/20/90	39	Chloroform	10.0	9.22	9.35	92	93	80-125	1.4	<22
個	10		Bromodichloromethane	10.0	10.5	10.2	105	102	80-125	2.9	<22
			Dibromochloromethane	10.0	10.4	10.5	104	105	80-125	1.0	<22
			Bromoform	10.0	10.6	10.6	106	106	80-125	0.0	<22
3	1/27/00	16	Chloroform	10.0	0.05	8 02	00	90	90-125	0.2	~~~
1	4/21/30	40	Bromodichloromothano	10.0	10.0	10.35	100	102	90-125	2.0	~~~~
			Dibromochloromethane	10.0	10.0	10.5	100	100	00-125	3.0	~~~~
13			Bronoform	10.0	9.02	10.9	30	109	00-125	12	~22
				10.0	10.0	11.0	108	110	00-125	1.8	<22
	5/4/90	53	Chloroform	10.0	8.92	8.98	89	90	80-125	0.7	<22
13			Bromodichloromethane	10.0	10.4	9.20	104	92	80-125	12	<22
			Dibromochloromethane	10.0	10.1	10.3	101	103	80-125	2.0	<22
1.114			Bromoform	10.0	9.92	9.20	99	92	80-125	7.5	<22

10100

State of

(married

### TABLE D-10

1

ii

The second

The second

1

Sector Sector

I

T

and and

Concession of the local division of the loca

1

13

1.5

# SURROGATE ANALYSES¹ FOR THM HOLDING TIME STUDY

#### (DWR-Bryte Laboratory)

			Concentration (µg/L)				Ac	curacy (	Precision (RPD)		
Date	Day	Chemical	Spiked	Dil	Test 1	Test 2	Test 1	Test 2	Limits	LCS	Limits
3/9/90	0	Bromochloropropane	5	0	5.16		99.4		80-120		
				1/5	4.97		103		80-120		
3/16/90	7	Bromochloropropane	5	0	5.25	5.23	105	105	80-120	0	<20%
				0	4.92	5.12	98	102	80-120	4.0	<20%
				1/5	5.12	5.63	102	113	80-120	9.5	<20%
				1/5	5.22	5.78	104	116	80-120	10.2	<20%
3/23/90	14	Bromochloropropane	5	0	4.80	4.60	96	92	80-120	4.3	<20%
				1/5	5.15	5.12	103	102	80-120	0.58	<20%
3/30/90	21	(No results: bad int	ernal st	andard	from s	upplier)					
4-6-90	28	Bromochloropropane	5	0	5.46	4.99	109	100	80-120	9.0	<20%
				1/5	5.71	5.51	114	110	80-120	3.6	<20%
4/13/90	35	Bromochloropropane	5	0	5.09	5.12	102	102	80-120	0.59	<20%
				1/10	5.41	5.52	108	110	80-120	2.0	<20%
4/20/90	42	Bromochloropropane	5	0	4.98	5.03	100	101	80-120	1.0	<20%
				1/10	5.27	5.41	105	108	80-120	2.6	<20%
4/27/90	49	Bromochloropropane	5	0	5.04	5.04	101	101	80-120	0	<20%
	100			1/10	5.17	5.33	103	107	80-120	3.0	<20%
5/7/90	59	Bromochloropropage	5	0	4 83	4 80	97	96	80-120	0.6	<20%
		a susantar al al al al a		1/10	4.87	4.83	97	97	80-120	0.8	<20%
5/8/90	60	Bromochloropropane	(only	% rec	overv a	ven)	101	94	80-120		

Dil = dilution

µg/L = micrograms per liter (ppb)

1 Surrogate recovery involved a surrogate analyte, bromochloropropane, which is extremely unlikely to be found in any sample, and which was added to sample aliquots in known amounts before extraction. It is measured using the same methods as used for THM precursors. The purpose of the surrogate is to monitor method performance with each sample.

Additional copies of this publication are available without charge from:

State of California Department of Water Resources P.O. Box 942836 Sacramento, California 94236-0001 State of California-The Resources Agency Department of Water Resources P.O. Box 942836 Sacramento, California 94236-0001