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Emulation of a process-based estuarine hydrodynamic model
Limin Chen, Sujoy B. Roy and Paul H. Hutton

Research and Development, Tetra Tech, Lafayette, California, USA

ABSTRACT
Emulation modelling can be an effective alternative to traditional mechanistic approaches for complex
environmental systems and, if carefully conceived, can offer significantly reduced run times and user
expertise requirements. We present a case study of dynamic emulation for the domain of estuarine
water quality modelling, by reporting the development and evaluation of a one-dimensional hydro-
dynamic model emulator. The proposed “neuroemulator” retains the dynamic nature of the process-
based model utilizing a set of artificial neural networks. The underlying hydrodynamic model is
routinely used for analysis and management of the northern reach of the San Francisco Bay-Delta
estuary, a large complex region of strategic importance for water supply and ecosystem services on the
Pacific coast of California, USA. The reduced computational expense of the emulator affords opportu-
nities for direct use, as well as embedded use within other modelling frameworks such as those
developed for reservoir operations and socio-hydrology.
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Introduction

Computer models are playing an ever increasing role in
fostering our understanding of natural systems beha-
viour. Advances in computational capabilities have
contributed to the successful development and applica-
tion of sophisticated process-based models for the ana-
lysis and management of large-scale, complex
environmental systems. However, the computational
expense and esoteric user expertise associated with
these mechanistic models often limit their practical
usage, particularly in applications that evaluate long
periods of record (e.g. due to the use of synthetic
data) or require extensive sensitivity or scenario analy-
sis. Emulation modelling (also termed surrogate mod-
elling) can be an effective alternative to these more
traditional process-based modelling approaches.
Castelletti et al. (2012) defined an emulation model as
a “low-order approximation of the process-based
model that can be substituted for it in order to solve
a high resource-demanding problem”. In this paper we
present a case study of dynamic emulation modelling
for the domain of estuarine water quality; the case
study summarizes the development and evaluation of
a hydrodynamic model emulator using a set of artificial
neural networks (ANNs), a subset of model emulation
that has been termed “neuroemulation” (Abrahart et al.
2012a). Although the term neuroemulation is relatively

new, the concept is not, and several model emulation
studies using ANNs have been documented over the
past two decades (e.g. Minns and Hall 1996, Londhe
and Deo 2003, Wilby et al. 2003).

This case study is focused on the development of an
emulator for a mechanistic one-dimensional hydrody-
namic model representing estuarine mixing and water
quality in the northern reach of the San Francisco
Bay-Delta estuary (hereafter the Delta) on the Pacific
coast in California, USA. Water quality management in
the Delta is of importance, as it is the single largest
freshwater supply for municipal and agricultural uses
in California and is a region of great ecological signifi-
cance (Norgaard et al. 2009, Luoma et al. 2015). The
Delta is characterized by complex hydrodynamics, with
multiple islands and branched channels, and is subject
to strong daily and sub-daily variations in tidal and
freshwater inflows from several sources. Although a
wide variety of model emulators have been reported in
the literature, the particular case of estuarine water
quality models (with highly dynamic tidal and fresh-
water flow interactions) has not been reported. The
general literature uses a variety of terminology for this
field of study, including surrogate modelling, meta-
modelling, and model approximation (e.g. Zhang et al.
2009, Carnevale et al. 2012, Villa-Vialaneix et al. 2012,
Razavi et al. 2012a, b, Sun et al. 2015). Not all emulation
modelling is concerned with dynamic processes; even
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when a dynamic process is the focus of study, retaining
the full dynamic behaviour of the underlying process
model may or may not be necessary to meet the study-
specific emulation goal. The term dynamic emulation
modelling is specifically applicable to the work pre-
sented in this case study. A further classification of this
case study is as a hybrid ANN model (Abrahart et al.
2012b, Wu et al. 2014) because it is not based on
observed data; instead, it merges the output of a pro-
cess-based mechanistic model with an ANN framework.

In this paper, ANNs were used for the emulation
modelling – this specific approach was termed neuroe-
mulation by Abrahart et al. (2012a) – for several reasons.
First, ANNs have demonstrated success in emulating
complex transport processes in several key sub-regions
of the Delta (Finch and Sandhu 1995, Sandhu et al. 1999,
Seneviratne et al. 2008, Chen and Roy 2014, Rath et al.
2017). Second, ANNs were adopted because of the
extensive body of literature demonstrating their use in
general water resources applications with complex, non-
linear relationships between inputs and outputs (e.g.
Maier et al. 2010, Wu et al. 2014). Third, ANNs are
reported to be one of the more common emulation
approaches (Razavi et al. 2012a). Finally, ANNs were
adopted given their potential benefits for enabling struc-
tural diagnostics, performing sensitivity analysis, and
facilitating scenario analysis and decision making
(Abrahart et al. 2012b).

Besides ANNs, a variety of mathematical frameworks
have been deployed for model emulation across differ-
ent environmental disciplines, ranging from simple
polynomial approximation to more complex approxi-
mation, such as kriging, support vector machines, and
gaussian process emulation; for example, the reader is
referred to Razavi et al. (2012a) for a literature review on
water resources, and Lee et al. (2011) and Castruccio
et al. (2014) for applications in other domains. Each of
these emulation methods has strengths and weaknesses,
some of which have been reported in comparative stu-
dies where the same process model is emulated using
different techniques (Zhang et al. 2009, Villa-Vialaneix
et al. 2012). Despite the availability of this increasingly
robust literature on emulation modelling, there is no
general guidance as to the best approach for an arbitrary
problem, and study results are typically tied to the nat-
ure of the individual problem or model under consid-
eration. Thus, one might utilize the reported experience
for emulation of a particular type of model (e.g.
watershed models) to direct future work on related
models and systems. To the best of our knowledge,
there are no published studies of dynamic emulation
modelling of water quality in other estuarine settings
that could inform this case study; thus, the selection of

neuroemulation was guided by the Delta-specific experi-
ences noted above.

The research objective of this work was to develop a
suitable emulator –meeting the key criteria of rapid run
times and relatively easy user access – for a complex,
real-world mechanistic model that is used widely in
support of water resources and quality management in
California. The one-dimensional Delta Simulation
Model (DSM2) (Liu and Sandhu 2012) was selected as
the emulator prototype from among several available
estuarine hydrodynamic models because of its wide-
spread use in operations and planning by the
California water community. The emulation method
chosen (ANNs using the multi-layer perceptron, or
MLP structure) was based on the extensive application
and success of this approach in modelling dynamic
water resources problems, and the availability of a com-
mercial software framework for implementation. The
primary challenges encountered during this work were
the complexity of the underlying model, the large data-
sets required for training, and the absence of a priori
guidance on the best approach for model emulation in
the domain of estuarine water quality. The practical
outcomes of this work include: (1) a methodology that
is shown to effectively emulate a spatially and mechan-
istically complex model, with potential application to
other similarly structured models; (2) an emulation
tool with potential application by a broad user base
concerned with water quality and water resources issues
in California; and (3) the potential development of a
new class of future applications wherein the emulator is
embedded within other larger modelling frameworks,
e.g. reservoir modelling and socio-hydrology, among
others. Although ANNs have been used for modelling
subsets of Delta processes as noted above (e.g. Chen and
Roy 2014, Rath et al. 2017), there is no published infor-
mation on the emulation of the entire Delta Simulation
Model framework.

In the remainder of this paper, we first provide back-
ground on the case study’s environmental setting and the
hydrodynamic model that numerically represents the
setting. Next we describe the methods employed to
develop a neuroemulator of the process-based model.
The general emulation methodology follows the proce-
dural steps outlined in Castelletti et al. (2012), thus pla-
cing this work in the broader context of contemporary
emulation literature. Evaluation of the ANN emulation
model follows general guidelines (Maier et al. 2010, Wu
et al. 2014), which were based on an extensive review of
the application of ANNs in the water resources literature.
We present results from the case study with a dual focus
on quality of fit (predictive validation) and response to
key inputs (structural validation). We note that, in the
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context of neuroemulation, structural validation can be
assessed explicitly in a manner not available to ANN
models fit with field observations. Specifically, structural
validation of neuroemulators can be assessed directly by
re-running the process-based model to develop addi-
tional data for a different set of inputs, a step for which
there is no analogue when fitting with field observations.
Finally, we discuss the relevance of this work to the wider
literature on model emulation and on modelling of
estuarine processes.

Background

Environmental setting

The Delta, a complex estuarine system distinguished by
several freshwater inflows and tidal exchange with the
Pacific Ocean, is an intricate network of channels and
islands spanning 740 000 acres that supports a diverse
ecosystem and a predominantly agricultural land use
(Fig. 1). The Central Valley Project (CVP) and State
Water Project (SWP) export water from the Delta to
irrigate more than 3 million acres of farmland in the San
Joaquin Valley and south coast of California and provide
municipal supply for more than 20 million people.
Freshwater exports from the Delta are the single largest
source of water for diverse human uses in the state of
California, which, as a unit, ranks as the eighth largest
economy in the world (Delta Plan 2013, Luoma et al.
2015). California is also the largest agricultural produ-
cing state in the USA, and some of the most productive
counties in the state (2012 Census of US Agriculture,
USDA 2017) are supported in part by water exports
from the Delta. The Delta is also a region of great
ecological importance, with more than 750 plant and
animal species present, including some that are endan-
gered or threatened (Delta smelt, Hypomesus transpaci-
ficus; Longfin smelt, Spirinchus thaleichthys) and others
that are commercially important (e.g. chinook salmon,
Oncorhynchus tshawytscha) (Luoma et al. 2015, Moyle
et al. 2016, Nobriga and Rosenfield 2016).

Freshwater inflows to the Delta are provided by the
Sacramento River, the San Joaquin River, and smaller
east-side tributaries, including the Mokelumne,
Cosumnes, and Calaveras rivers (Fig. 1). Within the
Delta, flow patterns and water quality are affected by
hundreds of agricultural withdrawals and agricultural
return flows. Freshwater flows exit the Delta into San
Francisco Bay and the Pacific Ocean at Golden Gate.
The Delta is tidally influenced, and seawater intrudes
and disperses as a function of freshwater flows and
tidal water levels. In addition to releases from upstream
reservoirs, flow control facilities, including rock

barriers and operable gates, are used to manage flows
and associated water quality characteristics in the
Delta. This complex system has been developed over
the past century, in part to manage the multiple flow
and water quality requirements for humans and the
ecosystem in the estuary.

Delta water quality

At any given location in the Delta, the water is a complex
mixture of freshwater inflows and seawater, each with its
characteristic water quality, and is affected by natural
drivers and management actions. As an estuary in a
relatively arid region, salinity is the primary water quality
parameter of concern in the Delta, for both human and
ecological uses. However, other constituents are also of
interest from the standpoint of drinking water quality and
ecosystems, and have been monitored extensively over
the past three decades. For example, the California
Department of Water Resources (CDWR) Municipal
Water Quality Investigation (MWQI) programme moni-
tors Delta water quality for drinking water constituents of
interest; the programme collects data at 12 stations for
many constituents, such as chloride (Cl), bromide (Br),
sulphate (SO4

2−), base cations (calcium, Ca2+, potassium,
K+, etc.), organic carbon, and total dissolved solids (TDS)
(MWQI 2017). Most of these constituents may be con-
sidered to be conservative (non-reactive) in Delta waters;
other ones, such as dissolved organic carbon (DOC), may
be considered approximately conservative (Hutton et al.
1996). These conservative and near-conservative consti-
tuents are the focus of the present study. Other reactive
water quality constituents (e.g. nutrients and trace ele-
ments, such as mercury and selenium) are also the subject
of active monitoring and research in the Delta through
the MWQI and other programmes, but they are beyond
the scope of the present modelling effort.

Drinking water quality is primarily related to the con-
servative constituents identified above (Chen et al. 2010).
Salinity can cause taste problems, affect water recycling,
and raise costs to water users due to corrosion. Bromide,
as a component of salinity, is a constituent of concern due
to its potential to form several brominated disinfection
by-products (DBPs), such as trihalomethanes (THMs),
halo-acetic acids (HAAs), and bromate during drinking
water treatment (Hutton and Chung 1994, Hutton et al.
1996). The major source of bromide in the Delta is sea-
water intrusion. Organic carbon is another constituent of
concern, due to its potential to react with chlorine and
ozone during disinfection processes to form DBPs (Roy
et al. 2006, Chow et al. 2008). Major sources of organic
carbon in the Delta include tributary inputs, agricultural
drainage, algae, tidal marshes, wastewater discharge, and
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urban runoff. Local delta island drainage from peat soils
is another important source of organic carbon to the
Delta (Deverel et al. 2007). To minimize the formation
of THMs and other DBPs, most utilities that use Delta
water employ ozonation for disinfection (Chen et al.
2010). However, during ozonation, bromide remains a
constituent of concern because it can react with ozone
and organic carbon to produce potent brominated forms
of DBPs during disinfection (Krasner et al. 2006).

The variable ionic composition and total dissolved
solids in the three major water sources in the Delta are
shown in Figure 2. The salinity of seawater is predo-
minantly sodium and chloride; salinity in the
Sacramento River is predominantly bicarbonate; and
salinity in the San Joaquin River is characterized by a
homogenous blend of minerals, including a significant
sulphate fraction resulting from agricultural drainage.
The TDS concentrations of the three source waters are

Figure 1. Geographic setting of the San Francisco Bay-Delta Estuary (Delta) and 17 pre-defined hydrodynamic model emulator
output locations. Delta land use is predominantly agricultural although the Bay margins are highly urbanized. Locations of key
structures used to control water flow and quality, i.e. the Delta Cross Channel (DCC) gates and the south Delta barriers, are also
shown.
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approximately 34 500 mg/L for seawater, 100 mg/L for
the Sacramento River, and 300 mg/L for the San
Joaquin River (Hutton 2006). Delta water quality at
any point in space and time will reflect the signals
from these major water sources, as well as the signals
from volumetrically smaller sources (e.g. smaller tribu-
taries and in-Delta agricultural return flows). However,
given that the TDS of seawater is more than two orders

of magnitude greater than the other source waters, the
intrusion of even a small percentage of seawater by
volume will lead to high ionic concentrations in the
Delta.

Delta water quality modelling

Given the significance of the Delta to California’s water
supplies and ecology, there has been a long history of
modelling of the system to support management and for
basic research. The earliest models date back nearly five
decades (e.g. Orlob and Shubinski 1969, Di Toro et al.
1971), and an active modelling community supports a
variety of one-dimensional (1D), two-dimensional (2D),
and three-dimensional (3D) simulation tools, especially
for hydrodynamics and salinity transport (e.g. Liu and
Sandhu 2012, Achete et al. 2015, MacWilliams et al.
2015, Andrews et al. 2017, Martyr-Koller et al. 2017).

Of the above simulation tools, this work is focused on
the emulation of the Delta Simulation Model (DSM2)
(Liu and Sandhu 2012), because it is the most widely
used of the Delta water quality models, particularly for
management-related applications. The DSM2 model,
first developed in 1998 from an earlier generation of
models, is subject to regular process representation
updates and calibration improvements (CDWR 1998,
Liu and Sandhu 2012, Finch 2014). The DSM2 model
represents mixing of freshwater and saltwater flows and
exchanges across the Delta islands through a channel
network. Also, it represents various flow control gates
and barriers that are used to maintain desirable water
quality at key locations in the Delta. Using a set of
boundary flows and concentrations, DSM2 can compute
the resulting concentrations across space and time
within the Delta; see the model schematic shown in
Figure 3. Water quality constituents that have been
modelled, typically tied to one or more beneficial uses
for Delta waters, include conservative constituents, such
as specific conductance as a surrogate for salinity, indi-
vidual cations and anions, as well as non-conservative
constituents, such as nitrate (the majority of applica-
tions are institutional reports in the public domain, e.g.
Pandey 2001, Liu and Suits 2012, Liu and Sandhu 2012,
MWH 2012). Given their longer run times, simulation
results from high-dimensional models are generally
reported for short durations (e.g. 2–5 years;
MacWilliams et al. 2015, Martyr-Koller et al. 2017)
relative to DSM2. While high-dimensional models are
being applied to explore the more complex issues of the
region, at present they are not used for routine opera-
tions and planning analysis, and thus they were not
considered in the present study.
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Figure 2. Different salinity characteristics of Delta source
waters in terms of relative composition as well as total dis-
solved solids: (top) seawater – predominantly sodium and
chloride; (middle) Sacramento River – predominantly bicarbo-
nate; and (bottom) San Joaquin River – characterized by a
homogenous blend of minerals, including a significant sulphate
fraction resulting from agricultural drainage.
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Model calibration is typically performed by running
the model and adjusting the channel friction (Manning’s
n) coefficient and the dispersion coefficients (Liu and
Sandhu 2012). Model calibration was recently refined by
adjusting a larger number of system components, includ-
ing channel geometry details and poorly quantified island
exchanges (Finch 2014). The DSM2 version used for the
present analysis is v8.0.6 with the source code and execu-
table files available in the public domain (CDWR 2017).

Fingerprinting

Because of the complex mixing of water from different
sources (e.g. seawater, San Joaquin River, Sacramento
River) and long residence time in the Delta, there is an
occasional need to know the relative contribution of the
different sources at a particular location. Tracking the
water quality signal of different boundary sources at parti-
cular points in space and time in the Delta is herein
referred to as “fingerprinting”, shown schematically in
Figure 4. To address this need, an additional DSM2 mod-
ule was developed to allow for fingerprinting of individual

sources across the Delta (Anderson 2002, Anderson and
Wilde 2005). The assumption behind the DSM2 finger-
print calculation is that constituent transport is conserva-
tive and does not change as a result of any reactions (such
as decomposition, volatilization, or other transformation).
Theoretically, the approach is applicable for specific con-
ductance (SC) and major cations and anions, such as Na+,
Ca2+, Cl−, and Br−, and approximately valid for a consti-
tuent such as DOC, which can be assumed to beminimally
reactive in the Delta (Hutton et al. 1996).

The fingerprint concept can also be stated mathe-
matically. At any given location in the Delta, the water
volume will be a mixture of the contributions from the
boundary flows. The contributions may be from the
current time step and/or from previous time steps. The
constituent concentrations can be calculated at each
Delta location through superposition as the sum of
the products of volumetric contributions and boundary
concentrations, as defined below:

Ccc tð Þ ¼
Xn

i¼1

Xm

j¼0

V%i;�j

100
Ci;�j (1)

Figure 3. Schematic layout of the 1D Delta Simulation Model (DSM2) domain, showing the channels (black lines) and nodes (black
circles). The (red) dots identify the 17 pre-defined hydrodynamic model emulator output locations (as itemized in Fig. 1).
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where Ccc(t) is the concentration of a conservative
constituent at a specified location and time, Ci,-j is the
concentration of a conservative constituent from a
boundary source i at time −j, n is the total number of
boundary sources, m is the length of the system mem-
ory (assumed to be up to 6 months), and V%i,−j is the
percentage volume at a specified location from source i
at time −j.

Note that once the volumetric contribution from
different inflows has been obtained from DSM2 for
each defined output location (V%i,−j), the calcula-
tion of concentration is only a matrix multiplication
with the boundary concentration values, and does
not require the DSM2 water quality model to
be run.

The DSM2 model, including the fingerprint
component, is well established in the stakeholder
community, considered credible and used widely
for studies to understand water quality impacts
associated with changes in flows, operational condi-
tions and infrastructure. However, it requires a
fairly high level of user expertise and computational
resources to run, limiting its application among the
larger community of individuals concerned with
water quality management in the Delta. The goal
of this work was to develop and evaluate an emu-
lator for DSM2 using a set of artificial neural net-
works (ANNs), which retains the dynamic nature of
the original model.

Methods

For consistency with the broader literature on dynamic
emulation modelling, methods associated with the case
study are broadly introduced within the context of a
general framework proposed by Castelletti et al. (2012).
Next we describe the development of ANN training data
using the process-based model, i.e. DSM2. First, we pre-
selected a set of hydrological conditions and gate/barrier
operations and ran the model using these inputs to pro-
duce time series of volumetric fingerprints at pre-selected
training locations. The resulting time series data were
split randomly into three categories, for training, valida-
tion and testing, although the quantity of data in each
group was fixed at 70, 15 and 15%, respectively. Working
with these data, an appropriate structure for the emula-
tion model was developed through extensive trial and
error; the overall structure included individual sets of
ANNs for each source and location. The training process
resulted in a set of ANNs that emulated the response in
terms of volumetric fingerprint (V%i,−j in Equation (1)) at
17 pre-defined locations shown in Figure 1. The volu-
metric fingerprint computed by the ANNs wasmultiplied
with the boundary source concentrations to estimate the
concentration at each pre-defined location. Thus, the
emulation of concentrations at a given location consists
of an ANN emulation of the volumetric contribution of
individual sources and a matrix multiplication of the
fingerprints with the boundary concentrations. Model

Figure 4. Conceptual representation of fingerprinting of chemical constituents in the Delta, aiming to assess the contributions of
individual sources at an output location.
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results were evaluated by comparing the quality of fit to
the DSM2 output for the same inputs (termed predictive
validation by Wu et al. 2014) and by evaluating the
response of the model to fixed changes in inputs (akin
to structural validation, as defined by Wu et al. 2014).
These methods are described in more detail below.

Emulator conceptual framework

This neuroemulation case study falls into the general
category of dynamic emulation (Castelletti et al. 2012).
For consistency with the literature, Table 1 identifies the
relationship of the general elements of this framework
with components of our case study. The broad goal of the
study is to emulate the DSM2 model for the purposes of
decision making and scenario analysis, with a specific
goal of exploring the response of the process-based
model at pre-defined locations in the Delta, as a function
of the exogenous drivers and different conditions of the
control vector. The problem category being addressed
does not require recalibration of the underlying process-
based model, and the model parameters in DSM2 (e.g.
Manning’s n, dispersion coefficients, and channel geome-
try) are not adjusted during the development of the
DSM2 emulation. Because the model emulation is per-
formed with an ANN framework using DSM2-generated
data, the case study’s broad goal is accomplished through
development of a data-based emulator (Castelletti et al.
2012), independent of the mechanistic process equations
within DSM2.

A set of DSM2 simulations with a range of flow opera-
tion scenarios, including gate conditions and with Delta
water exports included or excluded, were developed to
represent the volumetric contribution of the boundary
flows (Fig. 5). A set of hydrological conditions was defined
and the DSM2 model was run using these inputs to pro-
duce the values of volumetric contribution at previously

specified locations. The same hydrological inputs were set
to a feedforward ANN and the training performed to
match the DSM2 output data. Multiple ANNs were used
to represent each station and the volumetric contribution
associated with each of the major sources. The training
procedure resulted in a set of ANNs that emulated the
response at the 17 pre-defined locations. The ANN-com-
ponent was focused on estimating the volumetric finger-
print. The ANN-based volumetric fingerprint was
associated with the constituent concentrations at the
boundaries, as in Equation (1), to calculate the resulting
concentrations at the output locations. Thus, the emula-
tion of concentration includes two discrete parts: (1) an
ANN emulation of the volumetric fingerprints, and (2) a
matrix multiplication of the fingerprints with the corre-
sponding boundary concentrations.

ANN training data

The first step in this work was to design and run a series
of DSM2 hydrodynamic and water quality simulations, to
generate an ANN training dataset of 24-hour daily aver-
aged model results that represents a wide range of Delta
hydrological and water management conditions. This
step is also termed the “design of experiments” in the
modelling emulation literature (e.g. Razavi et al. 2012b).
The DSM2 model was run to simulate unique volumetric
contributions from 15 boundary sources over a period
spanning from October 1990 to April 2010. This simula-
tion period was selected because (a) of the availability of a
well-calibrated model with inputs and outputs and (b) its
widely varying hydrology represents all five water year
classifications defined for regulatory and planning pur-
poses in the basin (i.e. wet, above normal, below normal,
dry, and critical) (Hutton et al. 2015). We would expect a
similar training outcome if a different time period was

Table 1. Case study design in the context of a general framework proposed for dynamic emulation modelling (Castelletti et al.
2012).
Element of emulation framework Relevance to the current study

Environmental system Sacramento–San Joaquin River Delta; bounded on the west by location of Martinez, where salinity is a
function of net Delta outflow, and with multiple freshwater inflows grouped as follows: Sacramento River,
San Joaquin River, Calaveras River, Mokelumne River downstream of Cosumnes River confluence, Yolo
Bypass, and agricultural return flows from Delta islands

Process-based model Delta Simulation Model (DSM2)
Exogenous drivers Tide at Martinez, freshwater inflows from boundaries, agricultural return flows
State variables Water level, flows, water sources, and salinity across channels in Delta, reported at 15-min frequency
Output of interest Water source volumetric contributions at selected, pre-defined locations in the Delta, averaged daily
Control vector Status of gates and barriers that are managed to improve the quality of water (generally by decreasing

salinity) in different sub-regions of the Delta
Vector of model parameters Model parameters (e.g. Manning’s coefficient and dispersion coefficients in each channel) that are adjusted

during calibration of process-based model. These model parameters were not adjusted for the case study
Problem category being addressed through
model emulation

Decision making and scenario analysis

Modelling approach (data-based) The model emulator is based on data generated using the process-based model (i.e. DSM2)

8 L. CHEN ET AL.



selected, so long as it was similarly representative of the
basin’s hydrology.

Ten scenarios, bounding the range of possible water
management operations (Table 2), were simulated over
the two-decade hydrological sequence. These scenarios
represent the full range of water management operations
that may be simulated with the DSM2 model: implemen-
tation of temporary barriers (historical operations, bar-
riers always in place, and barriers always taken out),
operation of Delta Cross Channel (DCC) gates (historical
operations, gates always closed, gates always open), and
south Delta exports (historical exports and no exports).

The first scenario represents the historical condition and
assumes inflows and operations that occurred in the past.
The remaining scenarios represent various adjustments
to the historical water management operations. Multiple
DSM2 scenarios were defined to create an ANN training
dataset that was not only large, but also captured a wide
range of flow and water management conditions. The
motivation driving the case study’s scenario design is
that ANNs, like other empirical formulations, perform
better at representing conditions that are within their
training horizon, and their performance outside this
range is not well defined.

The resulting ANN training dataset represents volu-
metric contributions from 15 sources (Table 3), including
the Sacramento River at Freeport, the San Joaquin River at
Vernalis, the Mokelumne River downstream of the
Cosumnes River confluence, the Calaveras River, the
Yolo Bypass, the downstream tidal boundary at Martinez,
and nine source groups from the Delta islands (Fig. 1).
These sources were linked to 17 pre-defined locations
(considered important from the standpoint of water qual-
ity regulation and management). Volumetric contribu-
tions by source were calculated by simulating a
conservative tracer in DSM2. A conservative tracer is
assigned to each source location for each month, and the
concentration of this tracer is tracked to calculate the

Table 2. Synopsis of process-based model (DSM2) scenarios
that were used to provide a wide range of conditions for
ANN training. DCC: Delta Cross Channel.
Scenario
no.

South Delta Barrier
operation

DCC gate
operation

Delta
exports

1 Historical Historical Historical
2 In Open Historical
3 Out Open Historical
4 In Closed Historical
5 Out Closed Historical
6 Historical Historical None
7 In Open None
8 Out Open None
9 In Closed None
10 Out Closed None

Figure 5. Conceptual framework of DSM2 emulator. Key inputs are freshwater inflows to the Delta, exports of water outside the
Delta, downstream tidal stage at Martinez, net channel depletions from Delta islands, and the status of flow control structures
(gates and barriers) used to manage interior Delta flows (see Fig. 1). This is used to compute the volumetric contribution and water
quality at a location “X”.
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volumetric contribution of the corresponding source. For
each location, we obtained the DSM2-generated volu-
metric fingerprint from a source for the current month
(V1%) and the five preceding months (V2%–V6%). The
simulated volumetric contributions from the 90 tracers (15
sources with six time stamps) for each of the 17 locations
were used in the ANN training. The Delta has an approx-
imate system memory (i.e. water residence time) of 6
months or less; therefore, additional antecedent values
were assumed insignificant. After 6 months, the tracers
were re-used, i.e. the same tracer number was used for the
months of January and July, February and August, and
so on.

For the ANN model training, an aggregated set of
hydrodynamic time series variables (in terms of flow or
tidal stage) were used as inputs (Table 4). In order to

better represent the impacts of flow control structures
and exports on Delta hydrodynamics, the operation of
south Delta barriers (0: closed; 1: open), the DCC gates
(0: closed; 1: one gate open; 2: two gates open) and
Delta exports were also included in the ANN model
training inputs. The tidal time series represents the
historical mean daily sea level at Martinez. The Delta
combined exports time series represents water diver-
sions associated with the SWP, CVP, Contra Costa
Canal (CCC) and the Contra Costa Water District
diversion at Los Vaqueros (LVR). As itemized in
Table 4, a total of 14 variables were used as the ANN
model inputs, which constitute a simplified representa-
tion of the full suite of hydrodynamic boundary con-
ditions utilized by the process-based model.

Model structure

The dynamic nature of flow and mixing in the Delta is
represented by a network structure that allows for a time
series input, with current and previous values of inputs
being considered. This is done using an architecture
called multilayer perceptrons (MLPs). Although other
network structures, such as generalized regression neural
networks (GRNNs), modular ANNs, and fuzzy hybrid
ANNs, have received attention in the recent hydrological
literature (Cigizoglu 2005, Wu et al. 2010, Chen et al.
2015), historically, MLPs are by far the most popular
ANN network structure used in similar water resources
applications; particularly, they represent more than 90%
of peer-reviewed applications in this field (Maier et al.
2010). The overall structure of the ANNs, as described
below, was based on extensive trial and error, with the
goal of reasonably representing the dynamic outputs of
DSM2.

All ANNs were run with the same inputs but were
trained for different outputs. We trained ANNs for each
of the boundary sources identified in Table 3, resulting in
20 ANNs for each of the 17 Delta output locations: six
ANNs for Sacramento River at Freeport (representing
tracers from the current and five previous months), nine
ANNs for Delta agricultural return flow (representing nine
Delta sub-regions), and one ANN for each of the remain-
ing boundary sources (i.e. San Joaquin River at Vernalis,
Calaveras River, Mokelumne River downstream of
Cosumnes River confluence, Yolo Bypass, and tidal
boundary at Martinez). With the exception of the
Sacramento River ANNs, each ANN produces six columns
of outputs representing six tracers from themonth and five
previous months corresponding to that boundary source.
For example, the San Joaquin River ANN produces the
output for V1%–V6% at a specific Delta location for tracers

Table 3. List of boundary sources used within the process-
based model (DSM2) to simulate unique volumetric
contributions.
Boundary source category No. of

sources
per

category

No. of
tracers

No. of
ANNs†

Boundary
water
quality
input

Sacramento River flow at
Freeport

1 6 6 Yes

San Joaquin River flow at
Vernalis

1 6 1 Yes

Mokelumne River flow
downstream of Cosumnes
River confluence *

1 6 1 Yes

Calaveras River flow 1 6 1 Yes
Yolo Bypass flow 1 6 1 Yes
Delta island return flows 9 54 9 Yes
Martinez tide 1 6 1 No
Total 15 90 20 –

* This represents the sum of the Mokelumne and Cosumnes river flow
inputs identified in Table 4.

† One ANN was generally trained for each source. However, six ANNs were
trained for the Sacramento River source, representing six different time
stamps (i.e. the current month and the five previous months).

Table 4. Input variables for the process-based model (DSM2)
emulation, including continuous flow and water level values
and discrete gate status values. cfs: cubic feet per second; MSL:
mean sea level.
Number Input variable Units

Flow & water level
1 Sacramento River flow at Freeport cfs
2 San Joaquin River flow at Vernalis cfs
3 Mokelumne River flow cfs
4 Cosumnes River flow cfs
5 Calaveras River flow cfs
6 Yolo Bypass flow cfs
7 Delta island net channel depletions cfs
8 Delta combined exports cfs
9 Martinez tide ft MSL

Gates & barrier operations
10 Grant Line Canal 0,1
11 Middle River near Tracy 0,1
12 Old River at Tracy 0,1
13 Head of Old River 0,1
14 Delta Cross Channel (DCC) 0,1,2*

*0: Gate is fully closed; 1: one gate is fully open; 2: two gates are fully open.
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originating at Vernalis. Thus, for the 17 output locations,
340 (17 × 20) ANNs were utilized.

For each ANN, the input layer contained a time series
of 14 input variables (Table 4). The hidden layer uses 30
neurons, which is formulated based on input variables
using a set of weights and biases. Each neuron is calcu-
lated using weights and inputs from each input variable.
For the 30 neurons and 14 input variables, this yielded a
total of 420 (14 × 30) weights and 420 bias parameters
that were adjusted during training. An input time delay of
180 days was used to account for the contribution of
inputs from previous time steps, given the residence
time in the Delta, which could be up to 6 months. The
output layer contained the volumetric contributions over
6 months for a specific source.

Training technique and dataset division

The ANN training was performed using a commercially
available product, the MATLAB Neural Network
Toolbox (Beale et al. 2011). While other commercial
and non-commercial tools may have similar functional-
ity, a formal evaluation of these tools was beyond the
scope of our case study. The general approach for training
is shown in Figure 6. With the large dataset used in the

training (outputs from 15 sources at six time steps, 17
output locations, and 10 DSM2 scenarios), ANN training
was conducted separately for different stations and
sources. Each training set consisted of 71 480 daily sets
(rows) of data. For each training run, 70, 15, and 15% of
the data were used for training, validation, and testing,
respectively. The training, validation, and testing sets
were randomly selected from the entire dataset for each
training cycle. Since the training outputs are six variables
representing percentage volumetric contribution from six
time periods, the output magnitudes can be very differ-
ent, depending on the location and time period. It is not
unusual for the volumetric contribution from one time
period to be much greater than other ones. The DSM2-
simulated percentage volumetric contribution could vary
over several orders of magnitude, i.e. from 90% to less
than 0.09%. Given the large variation among the six
volumetric tracers, as a training error minimization
approach we selected the mean standard error (MSE)
with “percent” normalization rather than the normal
MSE. Using this approach, the error was normalized to
the range of [–1, +1] across different variables during
training (Beale et al. 2011). The normalization accommo-
dated fitting variables that are small in magnitude.
Training was stopped when the improvement in

Figure 6. ANN training approach. The same input scenarios (Table 2) were provided as input to the DSM2 model and the ANN.
Multiple ANNs were trained to represent different flows and locations, as explained in the text. Training involved fitting the ANN-
calculated volumetric fingerprints to the DSM volumetric fingerprint.
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performance between the training and validation data
was below a pre-defined threshold.

Because of the network extent and the long time lags
(180 days) incorporated in the training, the requirements
for computer systemmemory and speed were substantial.
Within ANN training we selected the scaled conjugated
gradient (SCG) method, because it has been reported to
provide faster convergence than other errorminimization
approaches, such as Levenberg-Marquardt (LM), for
large training datasets (Beale et al. 2011). Nevertheless, a
formal evaluation of the efficiency of other error mini-
mization algorithms could be a topic for future research.

Model evaluation

The final ANNs were evaluated based on their goodness
of fit to the water quality data generated from the DSM2
model, with interim testing performed on the data sub-
sets during the training procedure. While this step,
defined as predictive validation by Wu et al. (2014),
provides information on the overall performance of
the ANN at representing the underlying data, it does
not provide structural information as to the relation-
ships between inputs and outputs (Wu et al. 2014). To
further evaluate whether the ANNs reasonably repre-
sented the DSM2 model, we performed two additional
tests. In the first test, we extended the DSM2 simulation
through 2010–2012, i.e. a hydrological period that was
distinct (independent hydrology and gate conditions)
from the training/testing/validation set described in
Section 3.2. In the second test, we evaluated the response
of the ANN models to specific input changes (by means
of gate operations, Sacramento River flows, and export
volumes), and compared the ANN response to the
response of the DSM2 model for the same input
changes. This second step may be considered similar to
the concept of structural validation, as described by Wu
et al. (2014).

Model application

The volumetric fingerprint simulation results of the
ANNs were applied to estimate the specific conduc-
tance (SC) at the 17 output locations within the Delta.
The SC was chosen as an illustrative tracer for this
study because salinity is a key variable in an estuarine
setting, and also because SC is the most common field
measure of salinity in the Delta. Emulator results were
compared to SC estimates derived from the DSM2-
simulated volumetric contribution using the same cal-
culation method. The SC, a common measure of how
well water can conduct an electrical current, is highly
correlated with ionic concentrations in water. An Excel

interface has been developed to estimate SC or DOC at
given locations, using user inputs of flow and concen-
trations from source boundaries. For model validation,
the ANN-estimated and DSM2-simulated volumetric
contribution from each source, along with SC concen-
trations at source locations, were used to calculate SC
at predicted locations within the Delta. A similar appli-
cation was conducted for bromide and DOC.

The SC values at Martinez (user input to the emula-
tor) were derived as a function of Delta outflow (Hutton
et al. 2015), while SC associated with other boundary
inflows (e.g. Sacramento River at Freeport, San Joaquin
River at Vernalis, agricultural return flows) were derived
from DSM2 inputs. Similarly, bromide and DOC con-
centrations associated with boundary inflows were
derived from DSM2 inputs.

Results

ANN performance

The ANN-simulated volumetric contributions were com-
pared to DSM2-simulated volumetric contributions for
each of the modelled flow sources. The fit in terms of
correlation coefficient was usually above 0.90 with a few
exceptions (additional details are provided by Chen and
Roy 2015). Generally, the stations on the Sacramento River
and San Joaquin River tributaries have better fits than
stations along Old and Middle rivers. This result is easily
explained by the fact that the former are highly influenced
by a single source (either Sacramento or San Joaquin river
flow). Time series plots at different scales provide addi-
tional insight into the operation of the ANNs. Figure 7
shows the comparison of DSM2 and ANN calculated
volumetric contributions at one representative location,
Old River at Bacon Island (ORB; Station 11 in Fig. 1; see
Supplementary material for input and output data for this
station). In general, the ANNs are able to predict very well
the contributions from an individual source at different
time periods. The ANN model captures the relative dom-
inance of the Sacramento River at this location, with smal-
ler contributions from the tidal boundary at Martinez,
flows from the San Joaquin and Mokelumne rivers, and
agricultural return flows.

Predictive validation

The emulator can be applied to simulate SC at the 17 pre-
defined Delta locations bymultiplying the ANN-generated
volumetric fingerprints with user-provided boundary con-
centrations. The emulator results were compared to SC,
derived from DSM2 fingerprint results at each of the 17
trained locations (Table 5). The correlation between
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emulator and DSM2-simulated SC is high (usually r-
2 > 0.90), demonstrating that the emulator is able to simu-
late SC variations at most locations. A similar application

was conducted to simulate bromide (Br) and DOC at
different locations in the Delta. Bromide concentrations
at source boundaries were derived from SC based on

Table 5. Comparison of emulator outputs with process-based model (DSM2) outputs for specific conductance
(SC, in μS/cm) at 17 output locations. Slope, intercept and r2 refer to a straight-line best fit between emulator
and DSM2 values. RMSE: Root mean square error.
Location Slope Intercept r2 Standard error RMSE

1. San Joaquin River at HWY4 0.94 110 0.953 0.0019 435
2. San Joaquin River at Jersey Point 0.95 44 0.945 0.0020 147
3. San Joaquin River at Prisoner’s Point 0.91 42 0.955 0.0012 35
4. Emmaton 0.98 54 0.956 0.0020 188
5. Rio Vista 0.90 25 0.925 0.0014 32
6. Collinsville 0.94 280 0.943 0.0021 739
7. Mallard/Chipps Island 0.93 530 0.951 0.0018 1027
8. Port Chicago 0.89 1300 0.945 0.0016 1563
9. Old River at Tracy 0.85 98 0.927 0.0011 58
10. Old River at HWY4 0.87 79 0.897 0.0017 59
11. Old River at Bacon 0.92 47 0.914 0.0018 61
12. Middle River at Union Island 0.90 62 0.956 0.0009 47
13. Middle River at Holt 0.89 61 0.933 0.0012 40
14. Middle River at Victoria 0.90 65 0.918 0.0012 43
15. Jones Pumping Plant 0.93 33 0.955 0.0009 34
16. Clifton Court Forebay Intake 0.92 51 0.925 0.0012 45
17. Antioch 0.94 160 0.953 0.0020 447
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Figure 7. Comparison of volumetric contribution time series at the Old River at Bacon (ORB) output location as predicted by (top)
the process-based model and (bottom) the emulation model. Sources are as defined in Table 3. SAC: Sacramento River at Freeport;
SJR: San Joaquin River at Vernalis; MOK: Mokelumne River downstream of the Cosumnes River confluence; CAL: Calaveras River;
Yolo: Yolo Bypass; Ag: Delta island return flows; and MTZ: seawater intrusion at the downstream tidal boundary at Martinez.
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relationships between Br with SC at these boundary loca-
tions, developed by MWH (2012). DOC concentrations at
boundaries were derived from DSM2 model inputs (Liu
and Sandhu 2012). Similarly good agreement between
emulator- and DSM2-simulated concentrations for Br
and DOC were found across all output locations (see
Appendix, Tables A1 and A2). The correlation between
emulator- and DSM2-simulated concentrations is gener-
ally strong (usually r2 > 0.85).

As previously noted, DSM2 model inputs and outputs
from the 1990–2010 hydrological period were used for
ANN development. As a further test of the emulation
model, the hydrological period was extended through
2012 to generate DSM2-simulated SC directly (i.e. without
the use of fingerprinting). The trained ANN models were
run for the extended period of 2010–2012. Because the
input conditions from 2010–2012 were independent of the
data previously provided to the ANNs, the agreement is
indicative of a reasonable underlying representation of the
original model. The results showed good agreement over
the period of 2010–2012 (Fig. 8).

Structural validation of ANN emulation

To explore the structural validity of ANNs, the trained
models were tested for sensitivity to the following three
perturbations and their performance was compared
with that of the original DSM2 model:

● Closure of DCC gates;
● Increase of Sacramento River flow by 10%;
● Reduction in Delta exports by 1000 cfs.

Sensitivity analysis results are reported for the ORB
station, as a representative example (Fig. 9). For instance,
increasing the Sacramento River flow by 10% results in
decreases in SC at ORB, as predicted by both models,

although there is some discrepancy in the magnitude of
decrease during high-flow months. With the closure of
the DCC gates, both ANNs and DSM2 predicted
increases in SC (Fig. 9). The amount of the predicted
increases in SC is similar between the two models. For a
fixed decrease in exports of 1000 cfs, the response for
ANNs and DSM2 is quite similar. In general, the sensi-
tivity test suggests a reasonable (although not exact)
response to these perturbations. Furthermore, the sensi-
tivity test helps provide an understanding of the
strengths and limitations of the ANN emulation
approach for this particular application.

Model run times and access

The primary reasons for exploring emulation in the
case study were to provide easier access to the DSM2
tool and to reduce run times. For access, the ANNs
were incorporated as functions, provided with a
MATLAB redistributable version (no cost to users)
that could be called through an Excel interface. The
input data needs are those specified for the ANNs, and
are considerably reduced from the original DSM2
model. The model run times were also considerably
faster; for comparison on the same machine, a 20-
year simulation of the DSM2 hydrodynamic and
water quality model required 3 hours, as compared to
about 1 minute for a single-location ANN run.

Discussion

This work, presented as a dynamic emulation case study,
demonstrates the potential utility of ANN-based emula-
tion (i.e. neuroemulation) to complex, real-world pro-
blems, specifically those related to the modelling of
estuarine systems. No a priori definition of success is
available for such a modelling effort. However, one may
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DSM2 historical run ending in April 2010 which was part of the ANN training dataset (DSM2 original), and an extended DSM2 run for
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define success based on a variety of considerations, includ-
ing the quality of model fit, the performance enhancement
in terms of computer run times, the resources required for
emulator development, and the credibility of the emulator
relative to the original process-based model. These con-
siderations are discussed below.

The emulator represents with high accuracy the
source-receptor response of the underlying process
model; it mimics the various source fingerprints over
nearly two orders of magnitude at multiple locations
across an estuarine gradient with a complexity of flow
patterns. Simulation results match the observed beha-
viour of selected conservative constituents over a two-
decade period. Given the spatial complexity incorporated
in the process model, a large number of ANNs were

necessary to emulate the model’s dynamic response at
17 pre-defined locations. While the model development
was nontrivial, it was performed using off-the-shelf com-
mercial software (Beale et al. 2011), thereby reducing
overall risk and development time and accommodating
replication in potential follow-up efforts.

The neuroemulator provides a significant enhance-
ment of the run times compared to the process-based
model; enhancements are even more significant when a
user is interested inmodel responses at a small number of
locations. Focus on a small number of locations is not an
unusual model application, given the importance of water
supply intakes and regulatory compliance points relative
to other locations in the estuary. When used to evaluate
response at a single station, the emulator run times are
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less than 1% of the time of the corresponding DSM2 run.
The model emulation is characterized by a minor loss in
fidelity; however, significant run-time improvements,
coupled with a stand-alone interface focused on a subset
of inputs, greatly enhance the access of the DSM2 model
to the broader stakeholder community. Access to DSM2
results through the emulator can provide new opportu-
nities for analysis, where the emulator is embedded
within more complex modelling frameworks. We envi-
sion that this approach will find use among a broader
community of users who want to explore the effects of
individual boundary sources on specific locations, to
understand relationships under varying conditions, and
also to pre-screen scenarios before embarking on fully
fledged DSM2 runs. The emulator could be embedded
within operational modelling frameworks where rapid
run times are needed, and for which no readily available
tool exists for general locations within the Delta. The
emulator could also be part of more complex frameworks,
where the hydrological response is only one component
of the analysis, such as those being envisioned for socio-
hydrological analysis (Mount et al. 2016).

Although the emulator and applications described
here suggest a valuable addition to the modelling
toolkit for Delta water quality management, four
important limitations are worthy of discussion.
Important limitations associated with this approach
include: (1) the case study’s limited focus on the MLP
ANN approach; (2) the emulator’s application to fixed
locations; (3) the emulator’s necessary linkage to a
fixed physical configuration; and (4) the human
resources required to develop the emulator. This case
study applied the MLP approach because of its broad
application in the literature and its prior success in
other Delta water quality problems, as described pre-
viously. A comparative evaluation of multiple emula-
tion approaches was precluded in the present scope by
the scale and complexity of the original DSM2 model.
However, the success and potential use of the present
application may stimulate further research into alter-
native emulation approaches in future work. The emu-
lator was developed for specific locations within the
Delta, based on their importance in water quality man-
agement; if outputs at additional locations are required
in the future, a new set of ANNs will need to be
trained. To maximize the efficiency of the emulator
development, it is therefore important that careful
thought be given in advance to the output locations
that are to be emulated. A further limitation of this
work is that it is closely tied to the calibration and
channel configuration in the original process-based
model. Any changes in model parameters and channel
geometry or connectivity are not represented

mechanistically; thus, emulation of alternative physical
configurations requires additional runs of the original
process-based model and re-training of the ANNs. This
is a considerable effort, and for this reason, emulator
development is only practical where the original model
has achieved certain stability in its calibration, as was
the case with the present DSM2 application. Finally,
although we emphasize the efficiency enhancement of
the emulator relative to the original model from the
standpoint of execution times, it is important to note
the considerable analyst effort that is needed for the
development and validation of the emulator. This effort
is justified only when there is a sufficiently broad user
base that will benefit from the efficiency enhancement.

Black box approaches, such as this neuroemulator,
are inherently difficult to validate definitively, except
through a comprehensive testing approach. Based on
the types of tests presented here, the emulator appears
to provide a reasonable response to changes in specific
inputs, although in some cases there are apparent dif-
ferences between the process-based model response
and the emulator response. No emulator can be
expected to fully replicate a complex model, and in
the experience of the authors, the minor loss of fidelity
is compensated by the significant improvement in run-
time efficiency; the simplification of inputs that allows
a much larger user base to apply the model; the ability
to perform inverse model runs, where the management
actions to obtain a desired water quality can be
explored efficiently; and the potential of incorporating
the emulator within a larger modelling framework that
considers drivers besides physical hydrology, a direc-
tion being increasingly adopted through the field of
socio-hydrology.
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Appendix

Table A1. Comparison of bromide estimated from volumetric contribution simulated by ANN and DSM2.
Location Slope Intercept r2 Standard error RMSE

San Joaquin River at Highway 4 0.94 0.11 0.953 0.002 0.51
San Joaquin River at Jersey Point 0.95 0.04 0.945 0.002 0.17
San Joaquin River at Prisoner’s Point 0.90 0.02 0.939 0.002 0.03
Emmaton 0.98 0.06 0.956 0.002 0.22
Rio Vista 0.88 0.01 0.901 0.003 0.03
Collinsville 0.94 0.32 0.943 0.002 0.86
Mallard/Chipps Island 0.93 0.60 0.951 0.002 1.20
Port Chicago 0.89 1.5 0.945 0.002 1.84
Old River at Tracy 0.79 0.049 0.854 0.002 0.04
Old River at HWY4 0.80 0.048 0.861 0.003 0.06
Old River at Bacon 0.91 0.027 0.897 0.003 0.07
Middle River at Union Island 0.89 0.026 0.947 0.001 0.02
Middle River at Holt 0.82 0.034 0.850 0.003 0.04
Middle River at Victoria 0.85 0.033 0.885 0.002 0.03
Jones Pumping 0.93 0.017 0.943 0.002 0.03
CCF Intake 0.88 0.025 0.924 0.002 0.03
Antioch 0.94 0.17 0.953 0.002 0.52

Table A2. Comparison of DOC estimated from volumetric contribution simulated by ANN and DSM2.
Location Slope Intercept r2 Standard error RMSE

San Joaquin River at Highway 4 0.96 0.15 0.982 0.0005 0.10
San Joaquin River at Jersey Point 0.95 0.17 0.982 0.0005 0.12
San Joaquin River at Prisoner’s Point 0.92 0.35 0.956 0.0008 0.21
Emmaton 0.96 0.10 0.992 0.0004 0.08
Rio Vista 0.97 0.07 0.994 0.0004 0.07
Collinsville 0.96 0.11 0.982 0.0005 0.09
Mallard/Chipps Island 0.94 0.13 0.972 0.0006 0.09
Port Chicago 0.83 0.26 0.933 0.0008 0.11
Old River at Tracy 0.79 0.94 0.887 0.0014 0.52
Old River at HWY4 0.86 0.55 0.914 0.0010 0.30
Old River at Bacon 0.91 0.39 0.935 0.0010 0.25
Middle River at Union Island 0.85 0.55 0.931 0.0012 0.39
Middle River at Holt 0.88 0.55 0.947 0.0009 0.28
Middle River at Victoria 0.84 0.57 0.910 0.0011 0.34
Jones Pumping 0.90 0.39 0.956 0.0007 0.23
CCF Intake 0.87 0.51 0.939 0.0009 0.27
Antioch 0.95 0.15 0.984 0.0005 0.10
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