
MWQI Copy

Photocopy and RETURN

Final Report on Experiment #2:
Seasonal Water Quality Changes in Flooded Peat Soil
Environments Due to Peat Soil, Water Depth, and
Water Exchange Rate

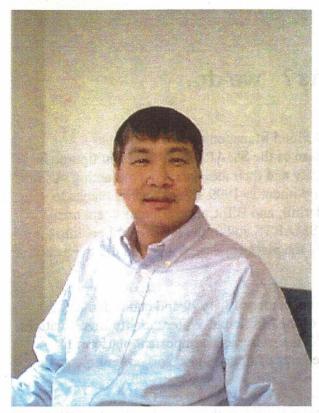
Marvin Jung and Associates, Inc.

Study conducted and funded by the Municipal Water Quality Investigations Program Division of Planning and Local Assistance California Department of Water Resources

December 2000

Final Report on Experiment #2: Seasonal Water Quality Changes in Flooded Peat Soil Environments Due to Peat Soil, Water Depth, and Water Exchange Rate

Marvin Jung¹ and Lori Weisser²


Study conducted and funded by the Municipal Water Quality Investigations Program Division of Planning and Local Assistance California Department of Water Resources

Report by Marvin Jung & Associates, Inc. under DWR contract #B80985

December 2000

1/(Corresponding author) Marvin Jung & Associates, Inc., 1370 Pebblewood Drive, Sacramento, CA 95833-1611, (916) 929-0722 (email: mjunginc@aol.com) or c/o Municipal Water Quality Investigations, California Department of Water Resources, 1020 Ninth St., Third Floor, Sacramento, CA 95814, (916) 327-1672 (email: marvjung@water.ca.gov)

2/ Municipal Water Quality Investigations, California Department of Water Resources, 1020 Ninth St., Third Floor, Sacramento, CA 95814, (916) 445-9843 (email: lweisser@water.ca.gov).

Marvin Jung is scientific consultant to Quality Municipal Water the Investigations Program of the Department of Water Resources. He has written over 20 publications on the drinking water quality the Sacramento-San Joaquin Delta. His work has been the foundation for many studies on the impacts of delta island drainage on municipal water supplies. Mr. Jung created and designed the SMARTS experimental station for DWR. He has served as an advisor, consultant, and expert witness on many San Francisco Bay and Delta water quality studies. His clients have included the State Water Resources Control Board, California Department of Water Resources, U.S. Bureau of Reclamation, State Water Contractors, the Metropolitan Water District of Southern California, and California

Urban Water Agencies. He has a B.S. degree in Chemical Oceanography from the University of Washington (1972) and a M.S. degree in Oceanography from the University of Michigan (1973).

Lori Weisser is a Water Resources Engineering Associate at the Municipal Water Quality Investigations Program of the California Department of Water Resources. She serves as the Site Manager for the SMARTS facility, where her primary duties include maintaining and operating the experiments and serving as a co-investigator. She has co-authored previous annual and technical reports for the MWQI studies. Since 1986, she has participated in field sampling, monitoring program planning and design, coordination with laboratory services, contract bidding and management, database management and analysis, and the reporting of water quality data. Ms. Weisser has an AA degree in Business Administration.

Acknowledgments

got smarts? we do.

We gratefully acknowledge the Division of Flood Management's Sacramento Maintenance Facility staff for the construction of the SMARTS (Special Multipurpose Applied Research Technology Station) facility and their assistance in conducting our first trial experiment in 1998 and our second experiment in 1999. Very special thanks to Gerald Snow, Dennis Storasli, Wendy Underhill, and Bill Carey. Dennis spent many months welding, assembling, and painting SMARTS and in the loading of peat into the tanks. Wendy took our sketches and drafted the platform design and Bill did the heavy concrete foundation work.

The second experiment at SMARTS began on January 13, 1999 and ended January 20, 2000. We thank the participating agencies of the Municipal Water Quality Investigations Program for sponsoring our study. SMARTS is serving as an important platform for conducting the experiments needed on the effects of flooded peat soil environments on drinking water quality.

Phil Wendt and Rich Breuer helped promote and approve the project under the MWQI Program. David Gonzalez and Chris Huitt of the Field Support Unit of the Water Quality Assessment Branch helped us with repairs, gave advice, and shared their facility and equipment. Murage Ngatia assisted with the chlorophyll work and Jim Hockenberry performed multiple wavelength UV absorbance scans. Bill Nickels and his staff at the DWR Bryte Chemical Laboratory promptly processed our samples.

We appreciated the enthusiastic support we received for SMARTS.

Marvin Jung

Lori Weisser

Table of Contents

Executive Summary	
Introduction	5
Experimental Design	7
Trial Experiment #1 Results	13
Experiment #2 Results	16
Peat Soil Characteristics	17
Water Supply and Materials Control Tank Water Quality	21
Flooded Soil and Soil Water Quality	24
The Thin Aerobic Soil Layer	
Surface Water Quality	38
Tank Comparisons	57
Data Validation	71
Discussion	73
Conclusion	77
References	78
Appendices	85

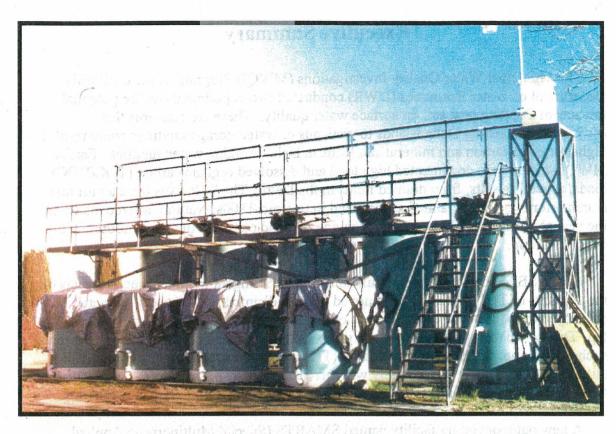
List of Tables

Table 1. Design Matrix	9
Table 2. Water Quality Laboratory Analyses	
Table 3. Differences in Trial and Experiment #2 Operations	
Table 4. Peat Soil Raw Data	
Table 5. Experiment #2 Peat Soil Data Summary	
Table 6. Water Supply Water Quality	
Table 7. Materials Control Tank Water Quality	
Table 8. Comparison of January, June, and September 2000 Samples	
Table 9. End of Year One Sample DOC, TTHMFP, and EC Results	
List of Figures	
Figure 1. Peat Soil Water Ammonia	26
Figure 2. Peat Soil Water Nitrate & Nitrite	20 27
Figure 3. Peat Soil Water EC	
Figure 4. Peat Soil Water Bromide	
Figure 5. Peat Soil Water Orthophosphate	
Figure 6. Peat Soil Water DOC	
Figure 7. Peat Soil Water UVA _{254nm}	
Figure 8. Peat Soil Water Temperature	
Figure 9. Peat Soil Water Specific Absorbance	
Figure 10. Peat Soil Water TTHMFP	
Figure 11. Surface Water Temperature	
Figure 12. Surface Water EC	
Figure 13. Surface Water Bromide	
Figure 14. Surface Water TOC	42
Figure 15. Surface Water DOC.	
Figure 16. Surface Water UVA _{254nm}	
Figure 17. Surface Water TTHMFP.	
Figure 18. Surface Water Specific Absorbance	
Figure 19. Surface Water Total Phosphorus	
Figure 20. Surface Water Orthophosphate	
Figure 21. Surface Water Total Kjeldahl Nitrogen	
Figure 22. Surface Water Dissolved Oxygen	
Figure 23. Surface Water Turbidity	
Figure 24. Surface Water Ammonia	54
Figure 25. Surface Water Nitrate & Nitrite	
Figure 26. Tanks 1 & 2 DOC.	
Figure 27. Tanks 3 & 4 DOC.	
Figure 28. Tanks 5 & 8 DOC.	
Figure 29. Tanks 6 & 7 DOC.	
Figure 30. Tanks 1 & 2 TTHMFP	
Figure 31. Tanks 3 & 4 TTHMFP	
Figure 32. Tanks 5 & 8 TTHMFP	65
Figure 33. Tanks 6 & 7 TTHMFP	66

Figure 34.	Tanks 1 & 2 EC	67
_	Tanks 3 & 4 EC.	
_	Tanks 5 & 8 EC	
Figure 37.	Tanks 6 & 7 EC	70

(
1
in a great and a significant a
. 1
l
·
ı
. 1
•
1
,
ı

Executive Summary


The Municipal Water Quality Investigations (MWQI) Program of the California Department of Water Resources (DWR) conducted two experiments on the potential impacts of flooding peat soil on surface water quality. There are concerns that conversion of existing Delta islands to wetlands or water storage facilities could result in higher organic carbon and mineral salt loads in Delta drinking water supplies. Earlier MWQI studies have documented high total and dissolved organic carbon (TOC/DOC) loads, as well as salts, from drained fields in the Delta. The Delta was once a vast tule marsh prior to being reclaimed as farmland in the mid-1800s. Natural organic matter in the peat soil, which originated from decaying wetland plants, is the major source of the organic carbon.

New USEPA drinking water regulations impose stringent treatment requirements on the amounts of TOC that must be removed prior to disinfection. These laws were developed to reduce the exposure levels of disinfection by-products at the consumer's tap. During the disinfection process, organic matter chemically reacts with disinfectants, such as chlorine, to form trihalomethanes (THM) and other carcinogenic compounds. Higher TOC in the raw water supply will increase the costs of treatment. Currently, the Delta is the primary source of drinking water for two-thirds of the State's population.

A new outdoor testing facility named SMARTS (Special Multipurpose Applied Research Technology Station) was designed and constructed by DWR for the experiments. Eight large tanks--with different combinations of peat soil depth (1.5 or 4 ft.), water depth (2 or 7 ft.), and water exchange rates (none or 1.5 times per week)-- were monitored in a three-month study (Expt. 1, 7/15/98 - 10/7/98) and, later, in a one-year study (Expt. 2, 1/13/99 - 1/21/00).

Experiment Design Matrix

Tank number	Depth of Peat Soil	Water Depth	Water Flow Rate Exchanges/week	Total Soil and Water Height	
1	Low @ 1.5 ft.	Low @ 2 ft.	none de jeur	3.5 ft.	
2 flow-thru	Low @ 1.5 ft.	Low @ 2 ft.	high @ 1.5/wk	3.5 ft.	
3	high @ 4 ft.	Low @ 2 ft	none nos	6 ft.	
4 flow-thru	high @ 4 ft.	low @ 2 ft	high @ 1.5/wk	6 ft.	
5	high @ 4 ft.	high @ 7 ft.	none	11 ft.	
6 flow-thru	Low @ 1.5 ft	high @ 7 ft.	high @ 1.5/wk	8.5 ft.	
7	Low @ 1.5 ft	high @ 7 ft	none	8.5 ft	
8 flow-thru	high @ 4 ft.	high @ 7 ft	high @ 1.5/wk	11 ft.	
9 control	none	11 ft	none	11 ft.	

DWR MWQI SMARTS Facility at Sacramento Maintenance Yard in Bryte

The studies showed:

- 1. Peat soil is a rich source of organic carbon and nutrients. When flooded and contained (no water exchange), the flood water concentrations of organic carbon, trihalomethane formation potential, EC, and nutrients can increase to high concentrations.
- 2. There were seasonal patterns in TOC/DOC concentrations in the simulated flooded peat soil environment. The trend appears to be related to seasonal temperature effects on microbial activities in the flooded peat soil and water. Microbes (e.g., bacteria, fungi) breakdown the organic matter and the rate roughly doubles or quadruples for every ten degree rise in temperature. TOC/DOC production and buildup was slowest in the cold winter and then rapidly increased in the warm spring and hot summer. The TOC/DOC concentrations remained steady through the fall as temperatures began declining.
- 3. The poorest water quality occurred under conditions of shallow water depth (2 ft.) and no surface water exchange. Those tanks that continuously received an exchange of new water at the rate of 1 to 1.5 surface water volumes per week had water quality similar to the incoming water supply due to constant dilution and flushing.

- 4. Shallow peat soil layers (1.5 and 4 feet deep) that had been submerged (2 and 7 feet) and had continuous surface water exchanged for a year continued to release DOC five months after the second experiment ended. Samples taken five months (6/21/00) after the one-year study ended (1/21/00) strongly suggest that the seasonal cycle would repeat itself and that organic carbon was still available from the peat soil.
- 5. Predicting the water quality impact or organic carbon loading from flooding soil cannot be determined by soil organic carbon (SOC) analyses alone. Soil organic carbon consists of weakly bound and strongly bound fractions. Peat soils of similar SOC concentrations can have significantly different proportions of these two fractions. It is the weakly bound or weakly adsorbed colloidal organic carbon fraction that becomes the dissolved organic carbon when in contact with water. The studies also showed that the DOC from submerged peat soil was humic and contained THM precursors. The strongly bound organic fraction eventually degraded and became a source of DOC during the study.
- 6. New or other soil test methods that involve filtration or centrifuging wet soil sample extracts for DOC and other constituents (e.g., iron, manganese) are needed to supplement SOC analyses to assess the "DOC formation potential" of a submerged soil. Mass loading estimates based on SOC data alone can depart widely from actual if an assumed SOC to DOC relationship is made. Two soil batches of similar SOC concentration in Experiment #2 were significantly different in their contribution of DOC to water.
- 7. Water quality impacts from flooded peat soils that had been leached and drained of soluble organic carbon prior to flooding, such as by heavy rainfall or by ponding, will produce a lesser impact than from soils that had not.
- 8. The peat soil was a source of increasing surface water EC and bromide. It is not known what proportion of salts are from peat (partially decomposed plant matter) or from evaporative deposits of irrigation water.
- 9. The experiments showed that for the protection of drinking water quality, the manipulation or selection of criteria for designing and operating confined wetlands or shallow water storage reservoirs should evaluate peat soil characteristics and flooding depths, water exchange rates, timing and duration of storage and released, and applied water quality.
- 10. Other significantly important contributing factors that were not studied include organic carbon generation and cycling of aquatic plants and algae. Plant and algae production may surpass peat soil as a major carbon source as a wetland develops and matures.

- 11. Six proposed actions were developed for incorporation in a wetlands restoration plan that could reduce impacts on drinking water quality from flooding agricultural fields. The combined actions could help reduce soil organic carbon and DOC availability in the fields prior to flooding and enhance the dilution and dispersion of organic carbon and nutrients released from the inundated soils. They are:
 - 1. Selecting proposed wetland sites with a low potential to release organic carbon:
 - 2. Reducing crop residues in the fields prior to initial flooding;
 - 3. Plowing the proposed flooded wetland areas during the warm months prior to initial flooding (Note: Land on or adjacent to the levees, however, should not be plowed as this would increase subsidence and erosion of the levees.);
 - 4. Flooding and draining fields prior to long-term flooding;
 - 5. Allowing water exchanges and movement across the wetlands; and
 - 6. Minimizing repeated wet and dry periods on the wetlands.

The effectiveness of each action and in combination with each other are expected to vary with different field conditions and how the actions are conducted. Further studies can provide specific guidance on the best operating procedure for each action.

12. Future work should include collection of soil data from proposed flooded areas in the Delta. Data on the physical and chemical characteristics of soil and pore water constituents are extremely limited to a few islands. Temporal and spatial variability are expected features that will be found across the 738,000 acres of the Delta. This information is needed to assess the potential levels of leachable constituents (e.g., DOC, nutrients) from the soil.

Introduction

Wetlands restoration and water storage on Sacramento-San Joaquin Delta islands are under consideration as major subcomponents to the CALFED Delta alternatives. It is unclear as to whether these actions could cause water quality impacts that could impair the ability of municipal water treatment plants in meeting new EPA regulations for the control of disinfection byproducts.

As part of the DWR Municipal Water Quality Investigations Program (MWQI), studies are underway and planned to assess these concerns. Computer model simulations will be used to compare the relative predicted water quality changes from different hypothetical scenarios of wetlands and island water storage facilities in the Delta. Details of this work and simulations of water quality changes from treating island drainage prior to discharge to reduce organic carbon loads are described in the MWQI Modeling Delta Alternatives To Improve Drinking Water Quality Work Plan. This work is important in assessing the water quality benefits of the CALFED Delta alternatives.

The California Urban Water Agencies (CUWA) and MWQI Program cosponsored our first experiment. The study was conducted from July 15 to October 7, 1998. The results were published in the report titled, "A Trial Experiment On Studying Short-Term Water Quality Changes In Flooded Peat Soil Environments." (Jung and Weisser, 1999).

The objectives of that trial experiment were met successfully. The objectives were to:

- 1. Design and test a new approach to gather information on the long-term changes in water quality in both surface and waterlogged peat soil water under different conditions of peat soil depth, flood water depth, and water exchange rate;
- 2. Obtain direction and guidance for planning the next iteration of experiments based on the technical challenges faced with a new study facility, equipment, and experimental protocol;
- 3. Observe short-term water quality changes during the early stages of flooded peat soil environments during the summer months under shallow flooded conditions (2 and 7 ft. deep); and
- 4. Serve as the first small step in planning future studies for the design, construction, and operation of shallow flooded wetlands that will have minimal impact on Delta water quality.

The second experiment had the primary objective of examining seasonal water quality changes. Experiment #2 was an improved version of the first trial experiment. All of the technical challenges (e.g., flow control) and confounding effects (e.g., algal

blooms) that were encountered in the trial experiment were under control in the second experiment. The overall goal of these studies was to provide results that would lead to the development of the best practices to minimize organic carbon levels in waters overlying peat soils during the construction and operation of submerged Delta islands and wetlands.

This is the final report for Experiment #2. The one-year study was conducted from January 13, 1999 through January 21, 2000. While the observations and findings are informative and insightful, any use of the results and conclusions of this report and of the first trial experiment should be made within the context of the stated objectives, test conditions, and duration of the experiments. The results of future experiments and of Experiments #1 and #2 will provide a more complete picture on the potential monthly mass loads of organic carbon from newly developed shallow wetland habitats in the Delta. Other important long-term factors that contribute or affect organic carbon loads, such as wetland plants and increased microbial activity, need to be studied.

Experimental Design

Three major factors that might affect the quality of water from flooding Delta peat soils were studied for a year in a mesocosm experiment. The factors are: (1) peat soil depth, (2) water depth, and (3) water exchange rate. Each factor was tested under a high and low condition.

These three factors were chosen because similar factors are controlled to protect water quality in receiving waters from wastewater discharges. Wastewater discharge permits include: (1) limits on mass loads being discharged; (2) a minimum discharge depth, and; (3) a minimum dilution ratio or water exchange. It is not known if these same factors could also affect the water quality of flooded peat soil environments and, if so, could controlling any of them result in lower organic carbon loads.

The important relationship between wetland plant communities and hydrology are, however, known.

"Water depth, flow patterns, and duration and frequency of flooding, which are the result of all of the hydrologic inputs and outputs, influence the biochemistry of the soils and are the major factors in the ultimate selection of the biota of wetlands. ... Hydrology is probably the single most important determinant of the establishment and maintenance of specific types of wetlands and wetland processes." (Mitsch and Gosselink, 1993)

Since field-type experiments are difficult to control and regulate and are extremely expensive, a controllable mesocosm-type of experimental approach and facility were designed. A 2³ full-factorial design was used to study the resulting water quality changes from different conditions of flooding. Full-factorial designed experiments are more efficient than single-factor experiments as fewer runs are necessary. The method can identify the main effects and interactive synergistic and antagonistic effects of the three factors. The design matrix for the experiment included eight runs (three factors each with two conditions) in eight tanks. A materials control test tank was added to assess leaching of organic carbon from the plastic PVC pipes and fiberglass tanks that were used.

The experimental design consisted of using nine large fiberglass tanks (four 810-gallon and five 1500-gallon capacities) filled with different combinations of peat soil and water depths under two different water exchange rates. A new testing facility was required and its construction was completed in late June of 1998. The facility was named SMARTS (Special Multipurpose Applied Research Technology Station) and is located at the Department of Water Resources Sacramento Maintenance Facility in West Sacramento (Bryte), which also houses the agency's Chemical Laboratory and MWQI Field Unit.

The tanks (6 and 11 feet high) were plumbed with an outlet pipe and valve mounted 0.5 feet from the bottom to sample peat soil water. A standpipe outlet was also

plumbed to the inside of each tank to maintain constant water levels (depth) in the tanks. The water flowing into the standpipes were collected into a trough for disposal to a nearby storm drain. Above each tank, fresh tap water was supplied to fill and maintain water exchange in the tanks.

Peat soil was collected from a Twitchell Island farm field to serve as the soil test material. Dry peat soil was collected in November 1998 to fill the first four tanks. Dirt was scraped from the top two feet of soil and loaded onto a dump truck by a front loader for delivery at the SMARTS facility. Large clumps of root mass and plants were removed by hand. The remaining soil was then mixed by a backhoe tractor and then loaded into the six-foot high tanks. Staff entered the tanks to tamp down and spread the soil evenly across the specified peat soil heights.

Due to the limited capacity of a small dump truck, a second load of peat was collected from the same Twitchell Island field of the first load to fill the remaining four eleven-foot high tanks in December 1998. However, the consistency of the peat soil was water saturated due to December rainstorms. The peat was in large, heavy, mud-like clumps. One fiberglass tank was damaged during loading when the peat was dropped into the tall, eleven-foot high tank, and was subsequently repaired.

All tanks were filled with the peat and water combinations on January 13, 1999. Water from a fire hydrant nearby to SMARTS was used to quickly fill the tanks. The tanks were later topped off on January 15.

The SMARTS water supply was tapped into a nearby water main in the Bryte Yard. The City of West Sacramento tap water was used as the water supply because of its fairly consistent chemical composition that was needed during the experiment. Natural water taken from the Sacramento River at Bryte varies chemically and would confound the planned experiment, especially when water quality constituents, such as TOC, DOC, and TTHMFP concentrations, are affected by upstream dam releases, farm drainage, runoff, and weather changes during the year.

Water exchange rates for each tank were adjusted with flow meters or in combination with adjustable screw-type valves for plastic tubing. Flows to designated tanks began on January 21. Small submersible electric water fountain pumps provided circulation (120 gph or 2880 gpd) in each tank to ensure complete mixing. The pumps and the first sampling event were also started on January 21 in the nine tanks.

The test conditions for each tank are described in the following design matrix table (Table 1). Peat soil depth did not exceed four feet to reduce the potential for structural failure of the fiberglass tanks. Peat soil samples were taken initially for soil organic carbon, percent organic matter, total Kjeldahl organic nitrogen, total phosphorus, and bromide analyses. This information was needed to check for homogeneity of the peat soil placed into each tank prior to the start of the experiment and to account for differences that may be due to variations in the starting organic and nutrient content of

the peat soil in each tank. BSK Laboratories, laboratory contractor for DWR, performed the soil analyses.

Table 1. Design Matrix

Nominal depths, rates, and heights

Tank number	Depth of Peat Soil	Water Depth	Water Flow Rate Exchanges/week	Total Soil and Water Height
1	Low @ 1.5 ft.	low @ 2 ft.	none	3.5 ft.
2f	Low @ 1.5 ft.	low @ 2 ft.	high @ 1.5/wk	3.5 ft.
3	high @ 4 ft.	low @ 2 ft	none	6 ft.
4f	high @ 4 ft.	low @ 2 ft	high @ 1.5/wk	6 ft.
5	high @ 4 ft.	high @ 7 ft.	none	11 ft.
6f	Low @ 1.5 ft	high @ 7 ft.	high @ 1.5/wk	8.5 ft.
7	Low @ 1.5 ft	high @ 7 ft	none	8.5 ft
8f	high @ 4 ft.	high @ 7 ft	high @ 1.5/wk	11 ft.
9	none	11 ft	none	11 ft.

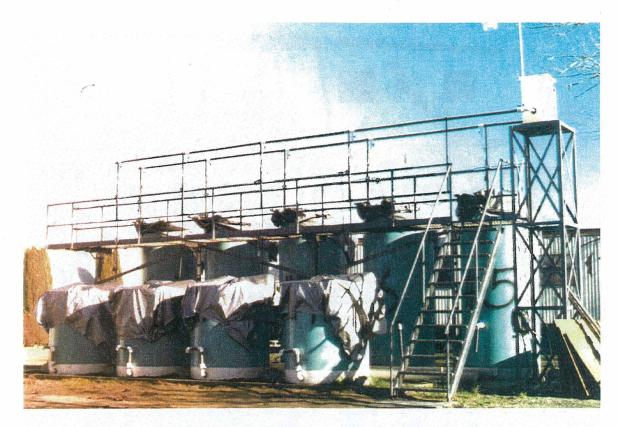
All samples were collected following procedures in the Municipal Water Quality Investigations Program Field Manual, August 1995, except where deviations were needed to meet this specific project. Water samples were collected every two weeks from the surface water (1-3 ft. below surface) of each tank and the water supply line. The small submersible pumps (2880 gpd) circulated surface water at the rate of 2.8 times per day in the tanks with 7 feet of water and 9.8 times per day in the tanks with 2 feet of water. Peat soil water samples were taken monthly from the bottom outlets of the tanks from January to July 1999. Thereafter, samples were taken quarterly as the previous monthly data showed minor changes in water quality. A duplicate sample was taken at each sampling event for QA/QC purposes.

A glass jar (500 ml.) that was suspended by a nylon cord was used to collect water samples from the tanks. Depending on the scheduled laboratory analyses about 2 or 3 liters of water were collected. The samples were, therefore, composites of smaller volume samples collected from the glass jar. A stainless steel bucket was used to collect from the water supply line. Water samples were transferred into one-gallon amber bottles that had been prerinsed with demineralized water and permanently labeled and assigned to each sample source (tank surface and bottom) to prevent cross-contamination and carry-over during the course of the experiment. Samples were preserved (Table 2) and transferred to the adjacent DWR Bryte Chemical Lab within four hours after collection. The Bryte Laboratory processed the samples to meet holding times.

Field measurements included water temperature, specific conductance (EC), pH, dissolved oxygen (DO), and turbidity. All instruments were calibrated prior to taking the first sample of the day following the respective manufacturer's instructions.

Table 2. Water Quality Laboratory Analyses

PARAMETER	CONTAINER	VOLUME	PRESERVATION	HOLDING TIME
Total Organic Carbon	Clear glass vial w/Teflon-silicone septa & screw cap	40 ml	H ₃ PO ₄ , pH<2, 4°C	28 days
Dissolved Organic Carbon	Clear glass vial w/Teflon-silicone septa & screw cap	40 ml	0.45 _u filtered, H ₃ PO ₄ , pH<2, 4°C	28 days
Trihalomethane Formation Potential (THMFP) reactivity- based	Amber glass vial w/Teflon-silicone septa & screw cap	3 - 40 ml	0.45 _u filtered, 4°C	14 days after quenching
UVA 254 _{nm}	poly	50 ml	0.45 _u filtered, 4°C	48 hours
Bromide	poly	50 ml	none required	28 days
Total Alkalinity	poly	100ml	4°C	28 days
Standard Nutrients (Code 2)	8 oz. poly 8 oz. poly	100 ml 100 ml	4°C unfiltered freeze unfiltered	48 hours 3 months
Ammonia	poly	400 ml	Cool to 4°C H ₂ SO ₄ to pH<2	28 days
Total Organic Nitrogen and Total Phosphorus	poly	100 ml	H ₂ SO ₄ to pH<2, 4°C	28 days
Chlorophyll a	0.45 micron glass fiber filter	500 ml	Freeze	28 days


Water misters, placed along the SMARTS platform railing above the tanks, were operated by a clock timer and began operating in April. The misters provided cooling for workers and the tanks during warm days. The tanks were covered in Experiment #2 to prevent water gain from rainfall, water loss from evaporation, and algae growth.

A set of four sampling wells for collecting peat soil water at 1, 2, 3, and 4 feet below the peat soil-water surface were installed into tanks 5 and 8. The wells were constructed of one-inch diameter, electrical PVC conduit pipe with pre-drilled holes located three inches along the soil end. Fiberglass window screening material was wrapped around the section (3 inch) with the holes and secured with plastic wire ties and an end cap. A peristaltic pump pulled the peat soil water samples from the pipe into an air-tight, flow-through glass jar that had pH and redox potential electrodes inserted through a large rubber stopper. EC was measured on the water exiting the glass chamber. Redox potential values were recorded when the water EC became steady. This assumed that a steady EC reading indicated that the well was purged of carry-over water and that in-situ water was now being pumped up into the chamber.

The peat soil was mixed by a backhoe prior to loading into the tanks.

The SMARTS facility began operating in mid-July 1998. This photo was taken when the second experiment began in January 1999. Plastic tarps

experiment began in January 1999. Plastic tarps were placed to prevent rainfall from entering the tanks and to limit evaporative losses and algae growth during the experiment.

Troughs collected water drained from the standpipes in the tanks that had continuous water exchange.

Trial Experiment #1 Results

The results of the three-month (7/15/98 – 10/7/98) trial experiment showed that all three factors tested (peat soil depth, water depth, and water exchange rate) had significant effects on water quality and that their effects were additive. Each of the eight test tank conditions simulated different combinations of the three factors during a short period of inundation. All tanks with continuous water exchange had better water quality than those tanks with no continuous water exchange. Water quality was considered best in this study as a condition with low concentrations of TOC, DOC, TTHMFP, mineral salts, nutrients, and algae. The results were published in the report titled, "A Trial Experiment On Studying Short-Term Water Quality Changes In Flooded Peat Soil Environments." (Jung and Weisser, 1999).

Peat soil depth was a major factor and the water quality of the peat soil water showed that peat is a large reservoir of organic carbon with a high TTHMFP and high mineral (EC) and nutrient content. The concentrations were significantly greater than in the surface water. The concentrations were higher than those typically found in the subsurface of drained and ponded fields. The difference is attributed to the absence of a drainage mechanism in the SMARTS tanks, which resulted in an anaerobic waterlogged environment. Concentrations are expected to decrease if the peat soil water is continuously or partially drained over time.

Peat soil was a high source of nutrients that helped stimulate algal growth in all the tanks. Mats of algae and gas ebullition from photosynthesis and respiration were seen. In some tanks, the algae mats floated and covered the entire surface and later sank to the bottom or became suspended as the algae colonies died or became dense and sank. This affected turbidity and probably some of the duplicate sample RPDs (relative percent differences) of the chlorophyll-a and nutrient analyses.

The most severe algal blooms were in the shallow flooded tanks with no continuous water exchange. Tank 3 surface water had the highest nutrient levels and chlorophyll-a. This tank contained four feet of peat under two feet of water with no continuous water exchange. Based on the surface water chlorophyll-a data, the Trophic State Index was 52 (Carlson, 1977). At this index, the conditions are described as the lower boundary of classical eutrophy for a lake, which is characterized by decreased transparency, anoxic hypolimnia during the summer, possible macrophyte problems, and iron and manganese and taste and odor problems if the water is used for drinking water (American Water Works Association Research Foundation, 1989). Others consider the conditions as hypereutrophic (Vollenweider and Kerekes, 1980).

The computed TOC from algae based on a standard chlorophyll-a to TOC conversion formula did not show algae to be the dominant source of organic carbon. Peat soil appeared to be the primary organic carbon source. However, the true contribution cannot be determined from the estimated biomass based on chlorophyll values. Future work needs to measure primary productivity, the rate at which inorganic carbon is converted to organic carbon.

The importance of dilution or high water depth in reducing high organic carbon and salt concentrations was seen. Tank 3 also had the poorest water quality. TOC reached 166 mg/l at the end of ten weeks of submergence. The EC was 532 µS/cm, TTHMFP at 11,300 µg/l, and DOC at 108 mg/l. A massive algal mat grew in the tank and chlorophyll-a was up to 200 µg/l (equivalent to 13.4 mg/l TOC). These values far exceeded those reported for Delta island drain water samples except for a few collected during or after winter leaching of adjacent fields that were ponded to leach out salts (CDWR, 1994).

The best water quality of a water storage condition was in tank 7, which held 1.5 ft. of peat under 7 ft. of water with no continuous water exchange. By the tenth week of submergence, the impounded water had 17.7 mg/l TOC, 16.5 mg/l DOC, 1430 μ g/l TTHMFP, and EC at 174 μ S/cm. Surface water in tank 5, which contained 4 ft. of peat under 7 ft. of water under no continuous water exchange, had 33.3 mg/l TOC, 26 mg/l DOC, 225 μ S/cm EC, and 2,190 μ g/l TTHMFP. In both cases, these concentrations, except for EC, are higher than those typically seen in the Delta channels and water export intakes.

Water exchange was another major factor that benefited water quality. The best conditions were seen in tanks 8f (4 ft. of peat) and 6f (1.5 ft. of peat), each with 7 ft. of water and a continuous water exchange of 1.5 surface water volume exchanges per week. The water quality was similar to conditions seen in the Delta channels.

Water quality in the tanks did not appear to stabilize until as early as the tenth week of the twelve-week experiment. For some tanks, in particular those with no water exchange and flooded to a two-foot depth, water quality continued to degrade. The trends showed that future experiments should be longer than three months.

Water quality could have been worse as release mechanisms at the soil-water surface, such as bioturbation, wave action, and pore water circulation, were not studied or simulated. An in-depth study of the contribution of organic carbon from the seasonal production and decomposition of vegetation, macrophytes, algae, and phytoplankton, also needs to be studied. Future experiments have been planned to examine these sources.

The increases in TOC, DOC, UVA_{254nm}, nutrients, and THMFP over time in hydric soils were in agreement with known biogeochemical processes of wetlands. The results were similar to those reported in other studies of drainage and wetlands performed by the MWQI Program, the USGS, and researchers in Florida (Moore et. al., 1998; Vaithiyanathan and Richardson, 1998).

The results were compared against field studies conducted by others. There was good agreement between our simulated experiment and field studies. Minor differences could be attributed to containment of the subsurface water in our tanks. The studies of open fields and ponds had seepage and subsurface water movement (drainage) occurring.

The study provided information on which factors should continue to be studied to predict the possible water quality conditions that might be seen from the immediate flooding and storage of water on a Delta peat soil wetland or island. Water quality changes were studied during the summer over a twelve-week period. Complete stabilization of some water quality parameters was uncertain and it indicated the need for longer experiments to observe seasonal changes (e.g., overturn of organic matter) and to compute seasonal mass loads of organic carbon and other constituents. It is possible that other factors or some of the tested factors will become less important over time. For example, plant or algal production might surpass peat soil as a major controlling factor of organic carbon as a wetland matures.

The potential impact for impairing the drinking water quality of Delta water supplies is real but could be minimized. The study showed that: (1) the design, construction, and operation of a flooded peat environment in the Delta must at least consider the three factors that were studied, (2) long-term studies must be conducted, and (3) more intensive studies are needed to quantitatively predict water quality changes from different types of wetlands and management schemes.

Other factors to be studied should include plant biomass contributions of organic carbon. Factorial experiments follow an iterative process to identify the best conditions of main factors to produce desired results. In our case, the desired results are good water quality. Future experiments might include examining water quality changes from: (1) a deep flooded condition (30-45 ft. inundation), (2) sediment or liner capping of peat soil, (3) wetland plant decay, (4) cycles of wet and dry periods in flooded wetlands, and (5) iterations of the past experiment to refine design and operational criteria for a wetland or shallow water storage basin in the Delta.

Experiment #2 Results

The operation of Experiment #2 differed from the previous trial experiment. In Experiment #2, the tanks were covered to eliminate the confounding effects of water loss (e.g., evapotranspiration) and gain (e.g., rainfall) and algae blooms from occurring in the tanks. The tanks were uncovered in the trial experiment. The sampling frequency was also reduced because of the longer duration of the study and to reduce sampling and laboratory costs. Sampling wells were installed in tanks 5 and 8 for collecting peat soil water samples for EC, pH, and redox potential measurements at four depths below the peat soil-water surface. The major differences between the trial experiment and current second experiment are summarized below:

Table 3. Differences in Trial and Experiment #2 Operations

Operation/Event	Trial Experiment	Experiment #2
Duration	12 weeks (7/15-10/7/98)	54 weeks (1/13/99-1/21/00)
Sampling surface water	Weekly	Every two weeks
Peat soil from Twitchell	Mixed one dry batch and	Two separate batches from
Island field	loaded into tanks	the same field had to be
		collected to fill all tanks.
		The first batch for tanks 1 –
		4 was fairly dry. Due to
		rainfall, the second batch
		(less mixed) for tanks 5-8
		was wet and clumped.
Peat soil water	Limited to sampling port	Added sampling wells for
measurements	located at 0.5 ft. from	redox potential, EC, and pH
	bottom of each tank.	measurements in tanks 5
	Monthly sampling.	and 8 at 1, 2, 3, and 4 foot
		soil depths.
		Monthly sampling then
		quarterly after 7/21/99
Tank covers	No covers. Full sun	Covered tightly with tarps;
	exposure	later with fiberglass lids
Controlling algal blooms	Blooms allowed to occur.	No blooms. Tanks covered.
Controlling water loss	No control. Water added to	Negligible water loss due to
(evapotranspiration or	some tanks during	tank covers
evaporation)	experiment to maintain water level.	
Water exchange rate control	Some interruptions and	Near constant at 1.5 surface
at 1 –1.5 surface water	unsteady flows until better	water volume
volume exchanges/week	flow regulators found.	exchanges/week
Continuous water	Pumps at 70 gph	Installed new pumps at 120
circulation inside tanks	ı Or	gph

Peat Soil Characteristics

The characteristics of peat soil in the Delta vary spatially and with depth below land surface and with time. As with many other soil types, variation and heterogeneity is the rule not the exception (James and Dow, 1972; Reed and Rigney, 1947). Soil is not a homogenous mass but rather a heterogeneous body of material (Petersen and Calvin, 1986). A DWR-USGS cooperative study found soil organic carbon concentrations at a Twitchell Island agricultural field to range from 18.3 to 27.7 percent for near-surface soils (0.5 to 1.5 ft. below land surface). Organic carbon taken from 4.5 to 6 feet of soil ranged from 25.2 to 36.9 percent (Fujii et al., 1998). The amounts of soil organic matter and other constituents (e.g., EC, minerals, moisture, nutrients) also change with the seasons as the fields are farmed (e.g., irrigated, flooded).

Peat soil samples were collected into glass jars from each tank for laboratory analyses performed by BSK Laboratories. Each glass jar was filled with a composite soil sample, consisting of 4 small grab samples taken in a random pattern from the peat soil surface layer of each tank.

Two batches of peat soil from the same field on Twitchell Island were collected for the study because a large dump truck was unavailable for our schedule. The first batch was collected in November 1998 before a storm event occurred in early December. Tanks 1 through 4 were filled with soil from the first batch. The second batch filled tanks 5 through 8 and was collected in December 1998. The latter batch was clumpy, muddy, and wet due to the storm. The rainstorm also resulted in significant differences between the two batches in the chemistry of the peat soil (Table 4). The soils data showed that the second soil batch had much of the soluble organic matter and nutrients washed away by the heavy rains prior to collection. The average concentration of DOC in the peat soil pore water after a week of flooding in tanks 1 - 4 were four-and-a half times than in tanks 5-8. The soil batch differences resulted in changing the experiment to include a comparison of water quality changes resulting from flooding a dry peat soil layer against a soil layer recently leached by heavy rains. In terms of comparing the paired tanks (i.e., tanks with same peat soil and water depths but different water exchange rates) the data was not affected by the different soil batches. Tank pair 1 and 2 and tank pair 3 and 4 used the first soil batch while tank pair 5 and 8 and pair 6 and 7 had the second soil batch.

Dissolved organic carbon is colloidal and organic carbon is adsorbed onto mineral particles such as iron oxide. The rains had removed much of the iron, phosphate, sulfate, and nitrogen in the second soil batch. The average DOC concentration in the pore water after the first week of flooding was 89.55 mg/l for the first batch tanks (#1 – 4) and 20.2 mg/l in the second batch tanks (#5 – 8). This indicates that the first batch had about four-and-a-half times more weakly bound organic carbon than the second soil batch. This assumes that the equilibrium DOC concentrations had been reached by the first week of flooding in the tanks. Laboratory studies confirm that the kinetics of DOC sorption/desorption are fast and within minutes (Thoma, et. al., 1991)

Table 4. Peat Soil Raw Data

Analyses	Tank 1	Tank 2	Tank 3	Tank 4	Tank 5	Tank 6	Tank 7	Tank 8	Average	Std.Dev.
Soil Organic Carbon (mg/Kg)	*70000	46000	39000	48000	41000	39000	49000	40000	43143	4375
Soil Organic Carbon (%)	*7	4.6	3.9	4.8	4.1	3.9	4.9	4	4.2	0.4
% Organic Matter (Gravimetric)	14.5 18	13	13	14	12	22	14	9.8	1475 14	4
% Ash Content)2%	61 56	62	63	63	14	19	21	28	26.5 41	22
% Moisture	26	24	24	23	74	59	65	62	45	22
Nitrate (mg/Kg)	16	16	12	12	1.3	1.3	1.3	2.6	7.8	6.8
Total Nitrogen (mg/Kg)	3900	3400	3300	3000	1800	1500	1800	1700	2550	946
Total Kjeldahl Nitrogen (mg/Kg)	3900	3400	3300	3000	1800	1500	1800	1700	2550	946
Total Phosphorus (mg/Kg)	839	751	613	700	148	211	500	186	494	277
Bromide (mg/Kg)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
Sulfate (mg/Kg)	440	290	390	380	68	150	120	230	259	138
Total Iron (mg/Kg)	15000	17000	17000	14000	2900	4000	7200	5700	10350	5985
Week 1 Pore water DOC (mg/l)	82.1	96	85.5	94.6	14.1	11.3	27.5	27.9		
Week 1 Surface water DOC (mg/l)	10.7	16.8	8.6	11.3	1.9	1.8	2.2	2.8		

Laboratory analyses by BSK Laboratories, Fresno, CA. Methods used are listed below.

Soil organic carbon (mg/kg) and soil organic carbon (%) by Walkley-Black method (SSSA, 1996). BSK lab results reported the Walkley-Black Method for determining soil organic carbon as soil organic matter. Technically, the use of these two terms interchangeably is incorrect. Soil organic carbon is a component of soil organic matter (SSSA, 1979). Soil organic matter estimates are roughly twice the Walkley-Black Method soil organic carbon values (SSSA, 1996). % organic matter (gravimetric) by ASTM D2974-87 (reapproved 1995) computed by equation % organic matter = 100% - (% ash + % moisture).

% ash content by Standard Method 2540-B. % moisture by ASTM D2974 method C.

Nitrate (NO3-N), bromide, and sulfate by EPA 300.0. Total Nitrogen and Total Kjeldahl Nitrogen by Standard Methods 4500. Total iron by EPA 6010.

^{*}Determined to be extraneous value by Dixon method (SSSA, 1986).

Statistical approaches (Keogh and Mapels, 1967; Sabbe and Marx, 1987) were reviewed to describe and handle the expected variation in soil characteristics. The raw data of the soil analyses from the eight tanks in Experiment #2 were checked for extraneous values following the recommended methods of the American Society of Agronomy and Soil Science Society of America (Dixon, 1986). The soil organic carbon (SOC) result (70,000 mg/kg) in tank 1 was determined to be an extraneous value and not used in computing the 95% confidence interval for the mean value of the remaining 7 analyses. The mean confidence interval SOC was about $43,140 \pm 3,330$ mg/kg. If the extraneous value was included, the 95% mean confidence interval SOC would be about $46,500 \pm 8,900$ mg/kg. The former mean value can be used in estimating the peat soil organic carbon mass load of each tank. The mean SOC and percent organic carbon values for tanks with the first soil batch (tanks 1-4) and second batch (5-8) were about the same (Table 5).

The soil organic carbon measurement using either the Walkley-Black method or ASTM D2974-87 showed that it alone could not be a reliable or quantitative measure of the weakly bound organic carbon in soil that will be removed by water (DOC). Soil organic carbon is composed of a strongly bound fraction, that repeated washing will not remove, and a weakly bound fraction that is measured as DOC when the soil is immersed (Thoma, et. al., 1991). However, portions of the strongly bound fraction can become removable by microbial degradation, soil enzymes, and changes in pH and other environmental factors. A leachate or saturated paste extraction type of test may be more useful in assessing the potential availability of DOC from water saturated soil. The difficulty in assessing potential DOC from SOC is analogous to measuring TOC alone in water to estimate DOC (fraction < 0.45 μ) and POC (particulate organic carbon, >0.45 μ) fractions, which vary with time and source.

Soil organic matter is defined as the organic fraction of soil that includes plant, animal, and microbial residues, fresh and at all stages of decomposition, and the relatively resistant soil humus (SSSA, 1979). The organic matter content influences many soil properties such as water retention, extractable bases, the supply of N, P, and micronutrients, soil aggregation, and soil aeration. Soil organic matter is normally restricted to only those organic materials that accompany soil particles through a 2-mm sieve. The organic matter of a soil may be estimated by multiplying the organic C content by a constant factor based on the percentage of C in organic matter. Published organic Corganic matter conversion factors for surface soils have ranged from 1.724 to 2.0. The factor of 1.724 is based on the assumption that organic matter contains 58% organic C when actually this proportion varies with soil type and depth. Surface soils rarely have a factor less than 1.8 and the subsurface factor may average about 2.5. Because both direct determinations of organic matter and the calculation of organic matter content from conversion factors is not completely accurate, it is recommended that these values serve as an index of the organic matter content in a soil (Nelson and Sommers, 1996). For comparison, the percentage of soil organic matter was computed by subtracting the percent moisture and percent ash from 100 (ASTM, 1995). This method yielded higher values than those that could be computed from the conversion factors (e.g., 1.74 - 2.2) applied to the organic carbon values. The discrepancy may be attributed to

dehydroxylation and decomposition of inorganic constituents, chiefly the hydrated aluminosilicates, which lose structural water and carbonate minerals and some hydrated salts during the ignition of the soil samples to 440 °C under the ASTM method (loss-onignition). The heating results in weight losses considerably in excess of actual organic matter content. This problem is particularly pronounced in subsoils with high clay and low organic matter (Christensen and Malmros, 1982; Howard and Howard, 1990).

Table 5. Experiment #2 Peat Soil Data Summary

Mean and 95% lower (LCL) and upper confidence limits (UCL) shown

Soil		Batch #1 Tanks 1 - 4		Batch #2 Tanks 5 – 8					
Character	95% LCL	Mean value	95% UCL	95% LCL	Mean value	95% UCL			
Soil organic carbon (mg/kg)	32594	44333 × .757 33560	56073	34972	42250 × .35 /4788	49527			
% organic carbon	3.3	4.4	5:6	3.5	4.2	4.9			
% organic matter (ASTM)	10.7	14.5	18.3	6	14.5	23			
% ash content	55.6	61	66.4	11.3	20.5	29.7			
% moisture	22.3	24.3	26.2	54.7	65	75.3			
Nitrate (mg/kg)	10.3	14	17.7	.6	1.6	2.7			
TKN or TN (mg/kg)	2805	3400	3995	1475	1700	1925			
Total P (mg/kg)	575	726	876	4.7	261	517.9			
Sulfate (mg/kg)	276	375	474	34	142	250			
Total Fe (mg/kg)	13363	15750	18137	1941	4950	7959			

Note: Tank 1 soil organic carbon value of 70000 mg/kg (7%) was deleted from statistical analysis as it was determined to be an extraneous value by the Dixon method (SSSA, 1986). The SOC mean value for tanks 2-7 was 43143 mg/l with a 95% LCL of 39096 mg/kg and 95% UCL of 47189 mg/kg.

Phosphorus in soil has both solid (> 99%) and solution phases. The solid phase consists of organic P, Fe, Al, and Ca phosphates, and P sorbed onto the surfaces of Fe and Al oxides. The solution phase is mostly orthophosphate ($H_2PO_4^{-1}$ or PO_4^{-3}) and small amounts of dissolved organic P and P bound to colloidal organic matter and iron oxide. A portion of the solid phase (< 25%) is labile (i.e., bioavailable) and readily transferred into the solution phase. When anaerobic conditions occur such as when soils are flooded, iron and manganese mineral oxides are reduced and become more soluble. Phosphorus sorbed onto these minerals will then be released into the water. The lower total P

concentrations in the second batch soils correlated with the lower total Fe concentrations, thereby, indicating dissolution, desorption, and oxidation-reduction processes had occurred to release P and Fe.

Water Supply and Materials Control Tank Water Quality

The water quality of the city water supply is shown in Table 6. The water quality was similar to that observed in the first trial experiment conducted during the summer of 1989. During the year the DOC ranged from 0.8 to 1.7 mg/l with the higher values in November 2000. Overall, the DOC concentrations were mostly between 0.8 and 1.2 mg/l. Total alkalinity ranged from 31 to 62 mg/l as CaCO₃. The electrical conductivities varied but with a few exceptions were between 150 to 200 μ S/cm during the year. Bromide levels were below the 0.01 mg/l reporting limit. The TTHMFP test was not performed but based on current drinking water standards for tap water (0.1 mg/l or 100 μ g/l) and the initial sample taken from the materials control tank (84 μ g/l), the TTHMFP was under 100 μ g/l. Residual chlorine was probably 2 mg/l, typical of water distribution systems.

Relative to some water quality constituents that have been observed in the Delta channels, the city tap water supply is much lower in organic carbon, TTHMFP, and EC. The low residual chlorine dose in tap water is not enough to form THMs. MWQI studies have shown that about 120 mg/l of chlorine is needed to maintain at least a 2 mg/l chlorine residual in the TTHMFP test for agricultural drain water collected from peat soil islands in the Delta (CDWR, 1990). If the residual is not met, the formation of THMs is an incomplete reaction. It, therefore, was unlikely that the tap water supply contributed significantly to the observed TTHMFP, TOC, and DOC in the experiment.

Water quality in tank #9, the materials control tank, showed that leaching of organic carbon from the fiberglass tanks and PVC pipes were insignificant to affect the experimental results (Table 7). No additional water was added after this tank was filled at the beginning of the experiment. The DOC ranged from 1.0 to 1.3 mg/l. EC increased from 170 to about 190 μ S/cm during the year, probably due to some minor evaporation through the tarp covering the tank. There were a few instances (3/31/00) of low EC readings that could have been due to rainwater falling into the tank when the cover was removed for sampling or flapping during the strong winds during the storms.

Table 6. Water Supply Water Quality

Sampling	DOC	UVA	Specific	Alkalinity (mg/L	Bromide	Total Iron	Dissolved	Field EC	Field	Field
date	(mg/L)	cm-1	Absorbance	as CaCO3)	(mg/L)	(mg/L)	Sulfate (mg/L)	(uS/cm)	DO	pН
1/21/99	1.3	0.22	1.69	31	<0.01	0.489	22	116		8.3
2/3/99	1.1	0.018	1.64	42	<0.01	0.352	20	154	10.2	7.11
2/18/99	1.0	0.016	1.6	39	<0.01	0.506	18	141	10.2	6.72
3/4/99	0.9	0.017	1.89	41	<0.01	0.358	22	142	9.5	6.46
3/17/99	0.8	0.014	1.75	45	<0.01	0.83	21	152	10.7	6.42
3/31/99	1.0	0.016	1.6	47	<0.01	0.161	25	170	9.29	7.15
4/13/99	0.8	0.013	1.63		<0.01	0.084	20	151	9.37	7.06
4/28/99	0.8	0.012	1.5	45	<0.01	0.054	17	122	8.4	6.83
5/12/99	0.9	0.011	1.22	40	<0.01	0.014	19	147	8.96	7.01
5/26/99	0.8	0.013	1.63	44	<0.01	0.129	20	161	7.67	6.86
6/9/99	1.0	0.015	1.5	51	<0.01	0.076	23	176	8.85	7.04
6/23/99	1.1	0.015	1.36	49	<0.01	0.054	17	165	8.61	6.79
7/7/99	1.1	0.017	1.55	47	<0.01	0.338	16	149	6.45	
7/21/99	0.9	0.015	1.67	41	<0.01	0.142	22	149	8.55	7.05
8/4/99	0.8	0.014	1.75	39	<0.01	0.225	20	159	8.54	6.95
8/19/99	1.2	0.021	1.75	58	<0.01	0.081	18	194	8.05	7.03
9/1/99	1.2	0.023	1.92	55	<0.01	0.155	22	187	7.54	6.9
9/15/99	1.4	0.023	1.64	64	<0.01	0.254	26	214	7.9	7.04
9/29/99	1.0	0.018	1.8	54	<0.01	0.376	16	160	8.48	6.78
10/13/99	0.8	0.016	2	44	<0.01	0.705	12	141	7.96	6.96
10/27/99	1.1	0.019	1.73	50	<0.01	2.63	16	155		
11/9/99	1.5	0.025	1.67	62	<0.01	0.806	18	182		
11/23/99	1.7	0.033	1.94	60	<0.01	0.486	26	215		
12/8/99	1.4	0.022	1.57	55	<0.01	0.645	19	189		7.24
12/21/99	1.2	0.018	1.5	57	<0.01	0.427	14	184		
1/5/00	0.9	0.018	2	58	<0.01	0.472	20	182		
1/19/00	1.2	0.021	1.75	38	<0.01	1.35	25	163		

Table 7. Materials Control Tank Water Quality

	тос	DOC	UVA	Spec.	Alka-	Am-	Bro-	TKN	Total	Bromodi	Bromo-	Chloro-	Dibromo-	Total	Field	Field	Field	Field
	(mg/L)	(mg/L)	(cm-1)	Abs.	linity	mo-	mide	(mg/L)	Phos-	chloro-	form	form	chloro-	THMFP	EC	DO	pН	Turbid-
					(mg/L as	nia	(mg/L)		phorus	methane	(ug/L)	(ug/L)	methane	(ug/L)	(uS/cm)	(mg/L)		ity
Date					CaCO3)	(mg/L)			(mg/L)	(ug/L)		<u> </u>	(ug/L)	L				(ntu)
1/21/99	1.9	1.12	0.015	1.34	46.9	0.05	<0.01	0.3	0.18	11	<10	73	<10	84	170	11.0	7.2	2.1
2/3/99	1.5	1.3	0.016	1.23		0.09				11	<10	65	<10	76	173	10.4	7.3	1.4
2/18/99	1.2	1.3	0.017	1.31		0.12				10	<10	71	<10	81	172	10.7	6.75	1.12
3/4/99	1.2	1.1	0.017	1.55		0.12				10	<10	60	<10	70	171	9.97	7.05	2.91
3/17/99	1.2	1.1	0.018	1.64	51	0.15	<0.01	0.2	0.11	10	<10	56	<10	66	170	10.05	7.11	0.85
3/31/99	1.1	1.1	0.02	1.82		0.15				10	<10	58	<10	68	129	9.47	7.62	1.31
4/13/99	1.2	1.0	0.018	1.8		0.13				11	<10	57	10	78	133	9.76	7.75	0.61
4/28/99	1.5	1.0	0.021	2.1		<0.01				11	<10	52	<10	63	143	8.11	7.24	0.96
5/12/99	1.0	1.2	0.019	1.58	51	<0.01	<0.01	0.1	0.1	<10	<10	50	<10	50	175	8.22	7.43	0.55
5/26/99	1.1	1.1	0.022	2.0		<0.01				<10	<10	56	<10	56	180	8.47	7.13	
6/9/99	1.1	1.0	0.019	1.9	49	<0.01	<0.01	<0.1	0.1	<10	<10	57	<10	57	182	8.65	7.56	0.62
6/23/99	1.1	1.2	0.019	1.58		0.02				<10	<10	58	<10	58	185	8.5	7.27	0.44
7/7/99	1.2	1.1	0.02	1.87	53	<0.01	0.01	0.1	0.07	<10	<10	48	<10	48	183	7.3	7.24	
7/21/99	1.2	1.3	0.02	1.54		<0.01				11	<10	58	<10	69	185	8.97	7.62	0.72
8/4/99	1.2	1.1	0.02	1.82	58	<0.01	<0.01	0.3	0.02	· 11	<10	57	<10	68	190	9.43	7.43	0.39
8/19/99	1.1	1,1	0.02	1.82		<0.01				11	<10	52	<10	63	187	9.27	8.37	0.65
9/1/99	1.4	1.1	0.02	1.82	54	<0.01	<0.01	0.1	0.01	<10	<10	57	<10	57	186	7.85	8.18	0.45
9/15/99	1.6	1.2	0.019	1.58		0.01				<10	<10	50	<10	50	186	7.97	8.53	0.49
9/29/99	1.2	1.1	0.019	1.73	59	<0.01	0.01	<0.1	0.01	<10	<10		<10	52	188	8.0	8.35	0.38
10/13/99	1.2	1.1	0.02	1.82		<0.01				8	<1	53	2	63	189	8.36	8.55	0.59
10/27/99	1.3	1.2	0.02	1.67			<0.01	0.1	<0.01		<1	54	2	65	188	8,96	8.44	0.76
11/9/99	1.4	1.1	0.019	1.73		<0.01				8	<1	50	2	60	188	10.5	8.53	1
11/23/99	1.3	1.1	0.022	2.0	57	<0.01	0.01	<0.1	0.01		<1	57	1	66	193	10.73	8.3	0.7
12/8/99	1.2	1.0	0.019	1.9		<0.01					<1	47	<1	55	193	10.67	8.32	0.83
12/21/99	1.3	1.2	0.02	1.67	54	<0.01	<0.01	0.1	<0.01	7	<1	48	1	56	194	11.88	7.92	0.5
1/5/00	1.1	1.0	0.022	2.2		<0.01				8	<1	46	1	55	124	12.1	6.94	3.05
1/19/00	1.2	1.1	0.02	1.82	52	<0.01	<0.01	<0.1	<0.01	8	<1	51	2	61	189	12.8	7.86	0.45

Flooded Soil and Soil Water Quality

When soil is flooded, oxygen levels in the soil column rapidly decrease to negligible concentrations as aerobic microorganisms consume oxygen and normal gaseous exchange is restricted as water blocks the entry of gases. This results in decreasing the thickness of the aerobic zone and increasing the anaerobic soil zone. Associated with these changes are a decrease in the aerobic microbial population and an increase in facultative and obligate anaerobes.

To meet their metabolic requirements, the microflora oxidize organic carbon (biological oxidation). In this process, inorganic and organic compounds are used as an energy source, serve as electron donors, and become oxidized. Since each oxidation reaction must be accompanied by a reduction reaction, there must be electron acceptors present to receive the electrons released during the oxidation of a substrate. The microbial processes that occur in flooded soil are: (1) those that use inorganic substances (O₂, manganic compounds, ferric oxyhydroxide compounds, and nitrogen oxides such as nitrate, nitrite, NO, N₂O, sulfate, carbon dioxide, and H₂) and (2) fermentation in which organic compounds are used as electron acceptors. Depending on the redox condition, these two types of microbial metabolism can occur simultaneously in different zones of the same soil.

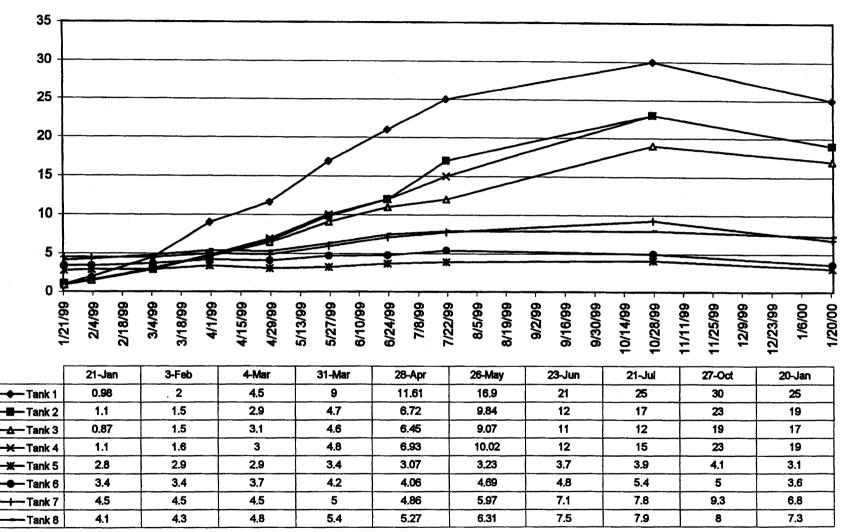
The anaerobic conditions can be monitored by measuring the oxidation-reduction or redox potential (E_h). This is a measure of electron availability and it characterizes the intensity of reduction and the likely forms of redox couples (i.e., specific chemical reactions). Aerobic bacteria respire at high E_h (>300 mV), facultative anaerobic bacteria at intermediate E_h (>0 mV and <300 mV), and obligate anaerobes at low or negative E_h values (>-100 mV-Reddy et. al. 1986). Organic matter turnover and nutrient cycling are strongly correlated with electron acceptor availability and redox conditions in wetland soils (McLatchey and Reddy, 1998).

Redox potential values (E_h) at the 1, 2, 3, and 4-foot peat soil depths in tanks 5 and 8 were mostly within the -100 to -200 millivolt (mV) range (Appendix A). At this E_h range, sulfate is reduced to sulfide. Hydrogen sulfide odors emanating from the collected peat water samples confirm this occurrence. Tanks 5 and 8 each had 4 feet of peat flooded to a water depth of 7 feet. Tank 8 had a surface water volume exchange rate of 1.5 times per week while tank 5 had no water exchange.

Under flooded conditions, obligate anaerobic bacteria reduce SO_4 to S^{2-} by using sulfate as an electron acceptor. Sulfide formation occurs after all the NO_3^- , which inhibits sulfate reduction, is lost from the system. Connell and Patrick (1968) reported S^{2-} formation in anaerobic soil with E_h of less than -150 mV. In a later study, sulfate reduction was found to begin at an E_h of <-100 mV and was followed by CO_2 reduction (methane formation – Reddy et al. 1986). The optimum pH for sulfide formation was between 6.5 and 8.5. Ammonia-nitrogen levels in the peat soil water in the Experiment #2 tanks increased over time (Figure 1) while nitrate levels decreased due to reduction

(Figure 2). This further supports the conclusion that sulfide formation was occurring in the flooded soil.

The E_h values in the two tanks showed that if an aerobic soil layer existed, it was less than a foot thick at the soil-water interface. The thickness of the aerobic zone has been found to vary from a few millimeters to 1 to 2 cm (Patrick and DeLaune, 1972; Patrick and Mikkelsen, 1971; Mitsch and Gosselink, 1993). The thickness of the aerobic layer is determined by the O_2 concentration of the floodwater (Howeler and Bouldin, 1971), the oxygen consumption rate of the underlying soil (Engler and Patrick, 1974), and the water percolation rate through the soil profile. Oxygen consumption rates of organic soils are expected to be higher than for mineral soils because of the higher organic matter in the former.


In addition to the redox potential (E_h) being affected by flooding, the ionic strength or salt concentration and pH in the soil column are also impacted. Flooding an organic soil increases the ion concentration in the soil solution. The most common cations that accumulate are ammonium (NH₄⁺), Ca, Fe, Mg, and Mn, which occupy the majority of the exchange complex. The cations formed during the reduction process (e.g., NH₄⁺, Fe, and Mn) displace other cations from the cation exchange complex into the soil solution, thereby increasing the ion concentration (Reddy, 1987). The EC and bromide concentrations over time are shown in Figures 3 and 4, respectively.

The concentrations and forms of nutrients such as nitrogen and phosphorus compounds are also controlled by redox conditions in flooded soils. Flooding organic soils can increase P release into drainage effluent by 4-8 times, compared with drained conditions (Reddy, 1983). The reduced forms of Fe and Mn minerals are more soluble than their oxidized counterparts such that P release from sediments is typically greater under anaerobic conditions than aerobic. Large fluxes of P from sediment could occur in shallow impoundments under low oxygen conditions due to the reduction and solubilization of ferric phosphate minerals in surficial sediments (Moore and Reddy, 1994). Diffusive and resuspension flux from bottom sediments can potentially support eutrophic levels in shallow lakes until P becomes a limiting factor (Reddy et al., 1996). Seasonal water-table fluctuations in wetlands can result in flooded and drained conditions in the surface soil, which could result in significant P release. Phosphorus flux in soils drained for 6 weeks was 10-fold higher (334 mg P m⁻²day⁻¹) than in soils drained for 3 weeks (Olila, et. al., 1997). Orthophosphate concentrations in peat soil water in Experiment #2 tanks are shown in Figure 5).

Microbial decomposition of organic matter results in the release of nitrogen in the ammonium form (NH₄[†]) through the process called ammonification. This is a mineralization process where there is microbial conversion of organic nitrogen into inorganic forms. Heterotrophic microorganisms utilize the organic matter as an energy source and only release inorganic nitrogen when the organic matter contains more nitrogen than the microorganisms need for their metabolism. This occurs when the carbon to nitrogen ratio in the organic matter is below 25:1 (Patrick and Mikkelsen, 1971). In the anaerobic soil layer, ammonium concentrations will increase as it is more

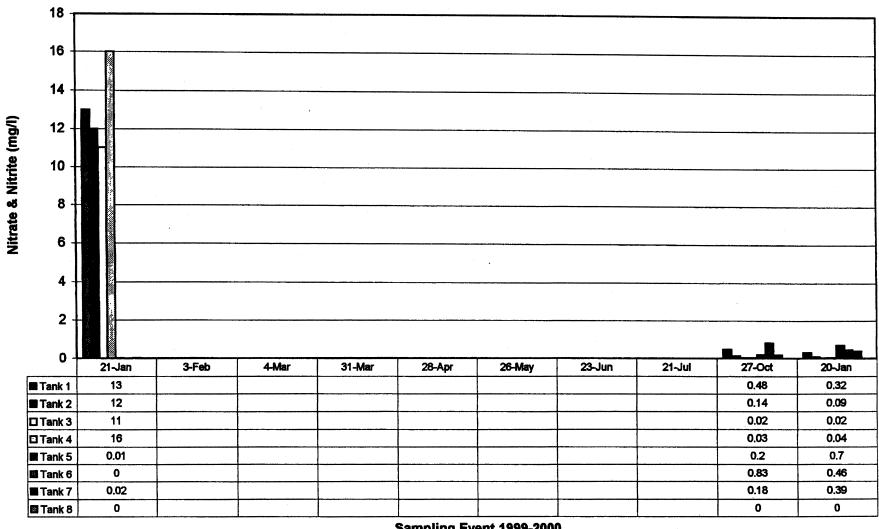

Ammonia (mg/l)

Figure 1. Peat Soil Water Ammonia

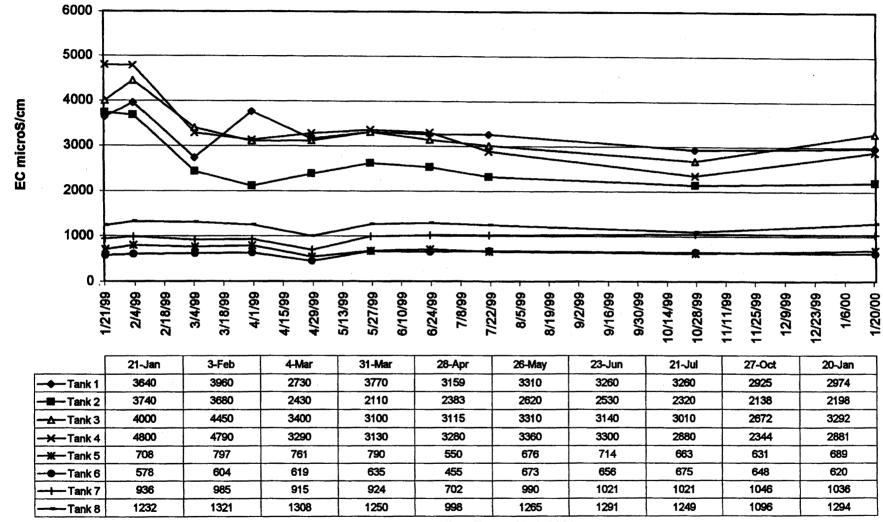

Sampling Event 1999-2000

Figure 2. Peat Soil Water Nitrate & Nitrite

Sampling Event 1999-2000

Figure 3. Peat Soil Water EC

Sampling Event 1999-2000

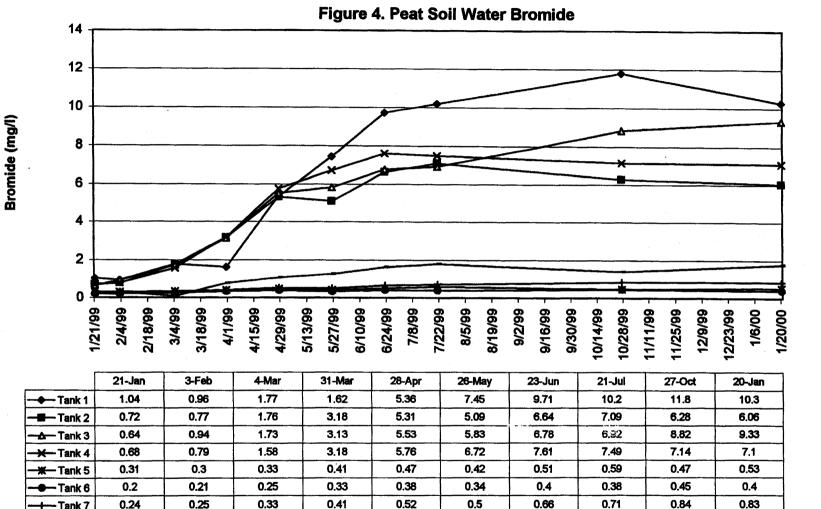
0.24

0.28

---- Tank 7

Tank 8

0.25


0.32

0.33

0.09

0.41

0.77

Sampling Event 1999-2000

0.5

1.28

1.63

0.71

1.8

0.84

1.41

0.83

1.78

0.52

1.08

stable under oxygen-deficit conditions than in aerobic conditions. Peat soil water ammonia concentrations followed this trend in both Experiments 1 and 2.

DOC is effectively retained in many subsoils and it is generally attributed to the sorption by Al and Fe oxides and clay (McDowell and Wood, 1984; Guggenberger and Zech, 1993; Kaiser and Zech, 1998). A recent study (Hagedorn et al., 2000) found that DOC coprecipitated with iron when a soil solution from a reduced mineral soil became aerobic. These sorption reactions are commonly seen in the use of alum and ferric chloride coagulants in water and wastewater treatment to remove DOC. However, both field and laboratory experiments indicate that under reducing conditions, the retention of dissolved organic matter (DOM) is small (McLaughlin et al., 1994). The explanation is the reductive dissolution of iron and manganese oxides.

Organic matter decomposition in flooded soils is related to its nature and the supply of electron acceptors. The rate of C decomposition has been described as first-order kinetics in two or three phases. Gilmour et al. (1977) indicated that the rapid phase involves amino acids and simple sugars followed by an intermediate phase involving cellulose and hemicellulose breakdown. The slow phase involves lipid and lignin fractions of organic matter. Reddy et al. (1980) indicated that the easily decomposable organic fraction was correlated with the C/N ratio of the substrate. Over 90 percent of the variability in aerobic C mineralization rates in peat and plant litter was attributed to by substrate P concentration and lignocellulose composition. Anaerobic C mineralization rates were about one-third of aerobic rates (DeBusk and Reddy, 1998).

The rate of organic matter decomposition under flooded soil conditions will depend on bacterial efficiency and the supply of electron acceptors (e.g., O₂, NO₃, Mn₄, Fe₃⁺, SO₄², and CO₂). Temperature changes can also affect the microbial activity of each season. Microbial activity is negligible below 5 °C and microbially mediated reductionoxidation reactions that consume O₂ and reduce Fe and Mn compounds become inhibited (Megonigal et al., 1996). The monthly DOC concentrations and UVA_{254nm} are shown in Figures 6 and 7, respectively. Both DOC and UVA_{254nm} increased through the warm summer and began to decline in the late summer as water temperatures fell. Tanks #1-4 had the higher DOC and UVA_{254nm} values due to the soil batch, which had the higher amount of weakly absorbed organic carbon and iron content. Tanks #5 - 8 had the lower values due to the soil batch, which had the lesser amount of weakly absorbed organic carbon and total iron. A literature search showed that the decomposition rate of organic carbon was reported to increase by 2 to 4 times for each 10°C rise in temperature (Reddy et. al., 1980). The peat soil water temperatures are shown in Figure 8. The monthly pattern in DOC, UVA254nm, specific absorbance (Figure 9), and TTHMFP (Figure 10) in the peat soil water corresponded well with the water temperatures. The data further showed that the DOC released from the peat soil in tanks #1 - 4 had a high THM formation potential and were humic in nature as shown by the high specific absorbance values. The lower DOC and THMFP concentrations in tanks #5 - 8 showed that most of the humic material had been removed from the second soil batch prior to flooding.

32

Sampling Event 1999-2000

UVA@254nm (1/cm)

Figure 7. Peat Soil Water UVA 254nm

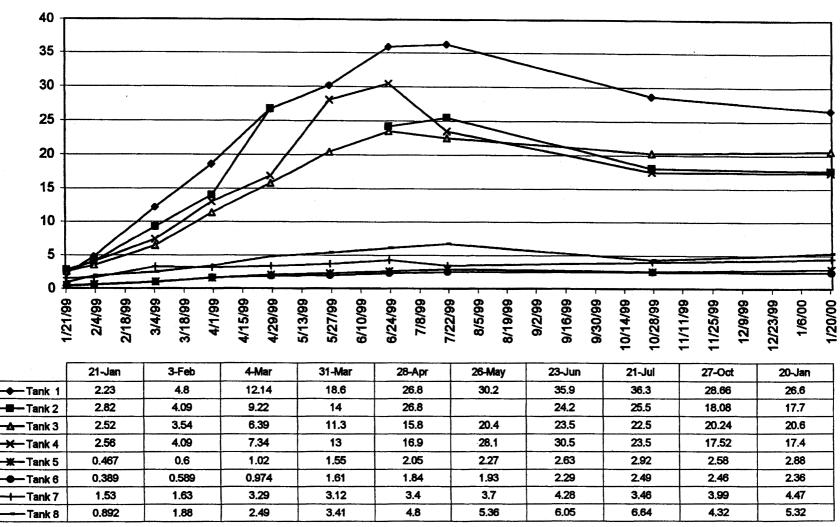
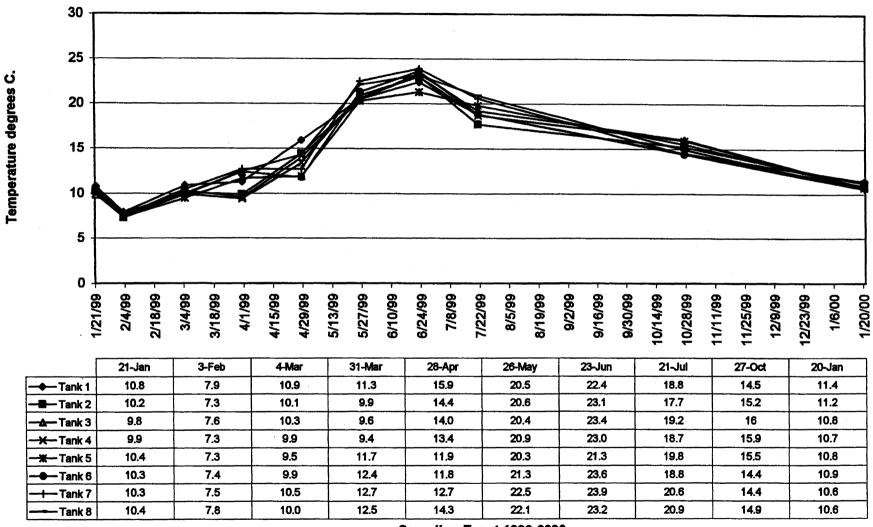
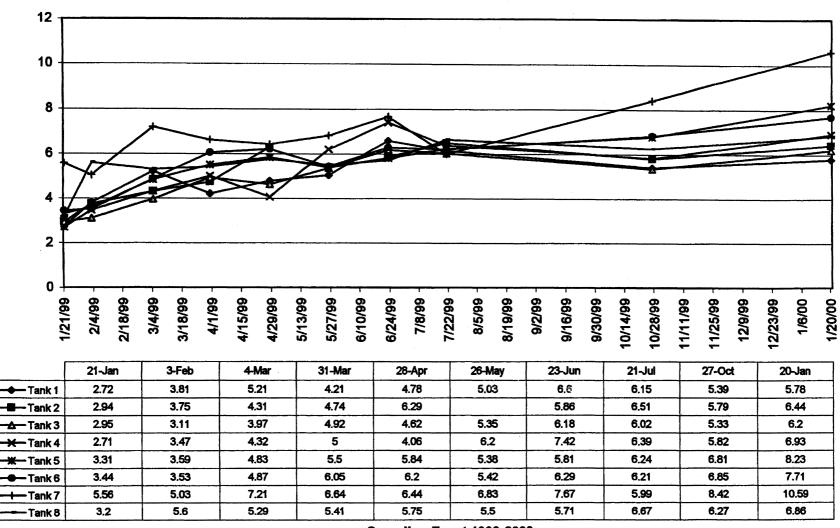




Figure 8. Peat Soil Water Temperature

Spec. Abs. (UVA@254nm x 100/DOC)

Figure 9. Peat Soil Water Specific Absorbance

TTHMFP (microg/I) 1/21/99 2/18/99 3/18/99 4/15/99 4/29/99 5/13/99 5/27/99 6/10/99 6/24/99 1/20/00 2/4/99 3/4/99 4/1/99 7/8/99 7/22/99 8/2/89 8/19/99 9/2/99 9/16/99 66/08/6 10/14/99 11/11/99 11/25/99 12/9/99 12/23/99 1/6/00 10/28/99 21-Jan 3-Feb 4-Mar 31-Mar 28-Apr 26-May 23-Jun 21-Jul 27-Oct 20-Jan → Tank 1 -A-Tank 3 X-Tank 4 ₩-Tank 5 -Tank 6 -Tank 7 -Tank 8

Figure 10. Peat Soil Water TTHMFP

Depending on the intensity of reduction, the anaerobic metabolism of soil organic matter results in the formation of complex residual humic materials, low molecular weight organic acids, carbon dioxide, methane, hydrogen, ammonia, amines, mercaptans, and hydrogen sulfide. Anoxic decomposition occurs through a series of intermediate steps that can be mediated by one or more microbial populations working with each other (Billen et al., 1988). Aerobic metabolism results in mostly the formation of carbon dioxide, sulphate, nitrate, and residual humic materials. It is believed that the humic materials formed and transformed under anaerobic conditions may tend to have large molecular weight and be structurally more complex (Gambrell et at. 1991).

Organic matter decomposition occurs at a slower rate in an anaerobic soil layer than in the thin aerobic soil layer. As a result, there is an accumulation of soluble organic carbon. Reddy (1982) showed that soluble organic carbon concentrations in flooded organic soils were more than double that found under drained conditions. This was seen in the peat soil water samples of the two experiments. Ammonia concentrations also accumulated because of the low N requirements of anaerobic bacteria (Moore et al., 1992). Extensive groundwater studies have dispelled the commonly held belief that groundwater is low in microbial activity because of low numbers of organisms. In fact, the numbers of organisms are only about one to two logs lower than in surface soil (e.g., $10^6/g$ vs. $10^8/g$; Ward and Elliott, 1995).

Other data from Experiment #2, including peat soil water alkalinity, TKN, TP, and pH are presented in the Appendix. These data also agreed with known biogeochemical processes of flooded agricultural soils under anaerobic conditions.

The Thin Aerobic Soil Layer

While a flooded soil condition will restrict the oxygen resupply rate and there is a continued consumption of oxygen or of other electron acceptors, it does not necessarily cause the formation of a uniformly reduced soil profile (Patrick and DeLaune, 1977). The top few millimeters or centimeters may remain aerobic because of oxygen diffusion for a short distance into the flooded soil from the overlying atmosphere and surface water. In this thin aerobic layer, the oxygen resupply rate exceeds the oxygen demand rate. However, if floodwaters are deep and stratified, an anaerobic layer can extend into the overlying water. This condition occurs when bottom waters are anoxic due to stratification.

The aerobic layer could be thicker in a large wetland or flooded area subject to large wind fetch or tidal pumping such as in an estuary. Such conditions can result in pore water circulation that brings organic matter and oxygen to the interior sediment and increases the flux of pore water constituents across the sediment-water interface (Shum and Sundby, 1996).

Important transformations of nitrogen occur in the aerobic soil layer. The ammonium that accumulates in the thick anaerobic layer diffuses up to the aerobic layer

and is oxidized by chemoautotrophic bacteria to nitrite then nitrate. The formed nitrate can diffuse down to the anaerobic layer due to the concentration gradient where denitrification converts it to molecular dinitrogen gas (Patrick and Reddy, 1976). Ammonia concentrations in Experiment #2 surface water samples (avg. <0.2 mg/L) were significantly less than in the anaerobic peat soil water (3-25 mg/L), thereby indicating nitrification of ammonium in the thin aerobic soil layer and overlying oxygenated surface water. The nitrification rate is dependent upon the thickness of the aerobic soil layer, ammonium concentration, pH, alkalinity, temperature, and number of nitrifying bacteria. The E_h is >300 mV when nitrification occurs. Denitrification below the aerobic zone occurs when the E_h is <300 mV and the rate depends on the nitrate levels, available carbon, temperature, and microflora.

Surface Water Quality

Strong concentration gradients for the water quality parameters existed between the peat soil and overlying surface water. As a result, upward diffusion through the porous peat resulted in a progressive increase in organic carbon, THMFP, SUVA, and some other constituents (e.g., turbidity, color) in the surface water of both experiments. Initial changes in Experiment #2 were slow and attributed to the colder winter temperatures that would inhibit molecular diffusion, increase water viscosity and density, and is a period of low microbial activity and organic decomposition.

Gas ebullition in the tanks was very high in the beginning after the tanks were flooded and water filled the air spaces in the porous peat soil. Gas formation or bubbling continued during the experiments as surface water continued to move down the soil column and as gases (e.g., N₂, N₂O, NH₃, CO₂, H₂S, CH₄) evolved from redox reactions and organic soil degradation occurred. Water depths in the tanks became shallower over time in the covered tanks with no water exchange and were attributed to water movement into the peat soil voids created by evolving gases moving out of the peat soil. Advection such as from gas ebullition may have been an important transport mechanism (D'Angelo and Reddy, 1994).

July to October 1998 surface water temperatures in Experiment #1 were between 15° and 28°C (average 22.7°C) with the lowest temperatures in the fall. Experiment #2 surface water temperatures started at about 7°C in January 1999 and reached 27°C by July before decreasing steadily in October and to below 10°C by December (Figure 11). In tanks 1 and 3, the monthly trends (increasing) of some water quality parameters (e.g., peat soil water ammonia and organic carbon, surface water TOC, DOC, THMFP) followed the water temperature changes. EC, bromide, TOC, DOC, UVA_{254nm}, TTHMFP, specific absorbance, TP, orthophosphate, and TKN reached their highest values in October and stabilized or declined when water temperatures progressively decreased (Figures 12 – 21). Other noticeable changes included higher dissolved oxygen levels in the surface water in the fall. These changes were attributed to decreased microbial activity (e.g., respiration and degradation) in the fall as water temperature fell, increased oxygen saturation in water, and lower oxygen demands in the water column (Figure 22)

Temperature degrees C

Figure 11. Surface Water Temperature

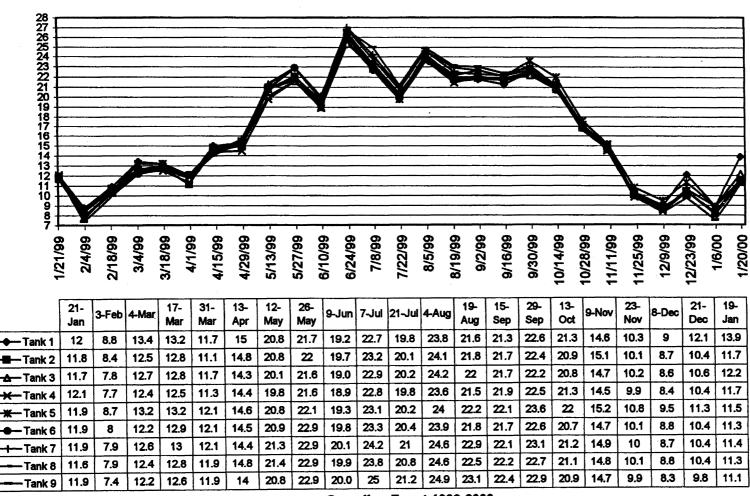
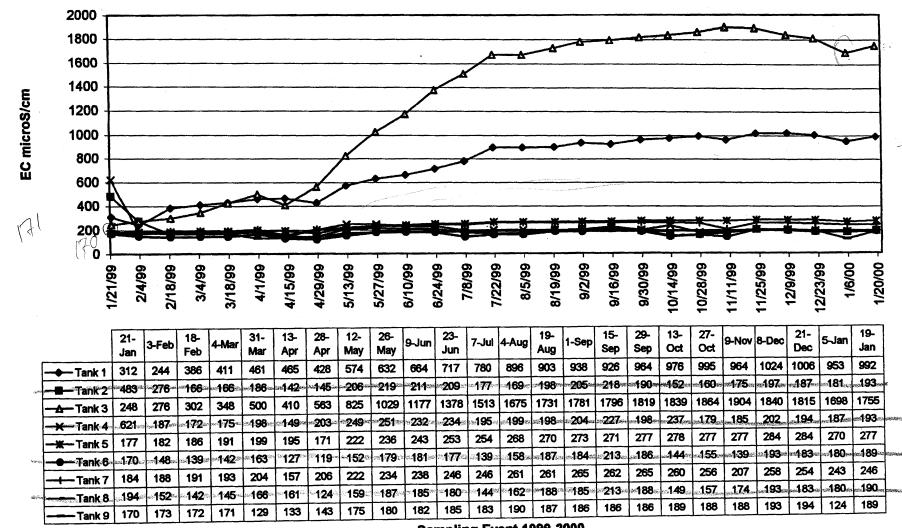



Figure 12. Surface Water EC

40

Figure 13. Surface Water Bromide

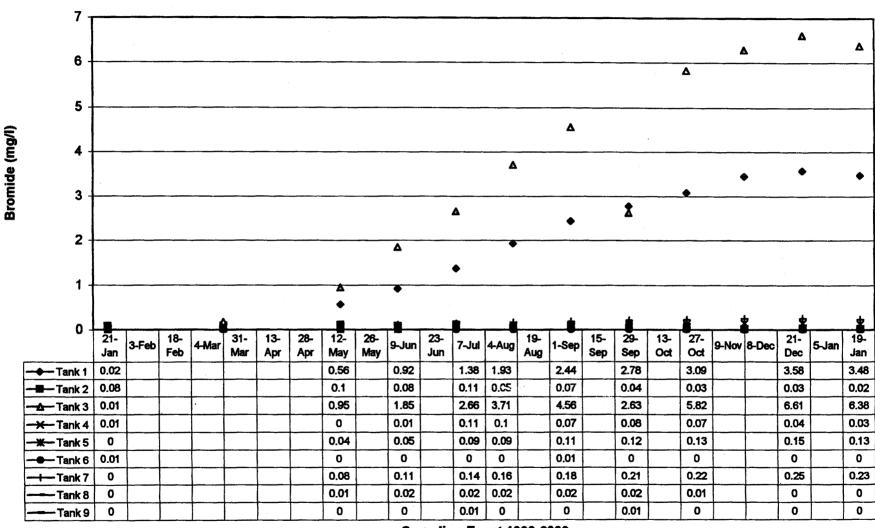


Figure 14. Surface Water TOC

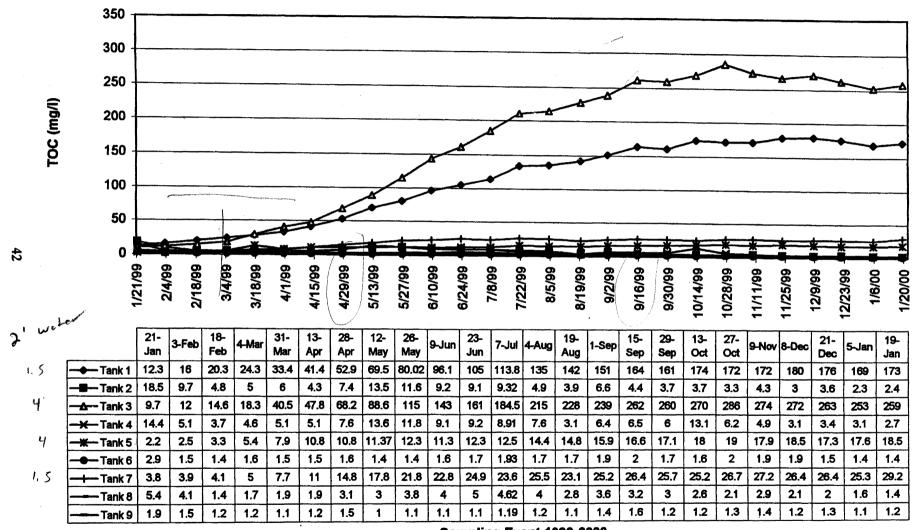


Figure 15. Surface Water DOC

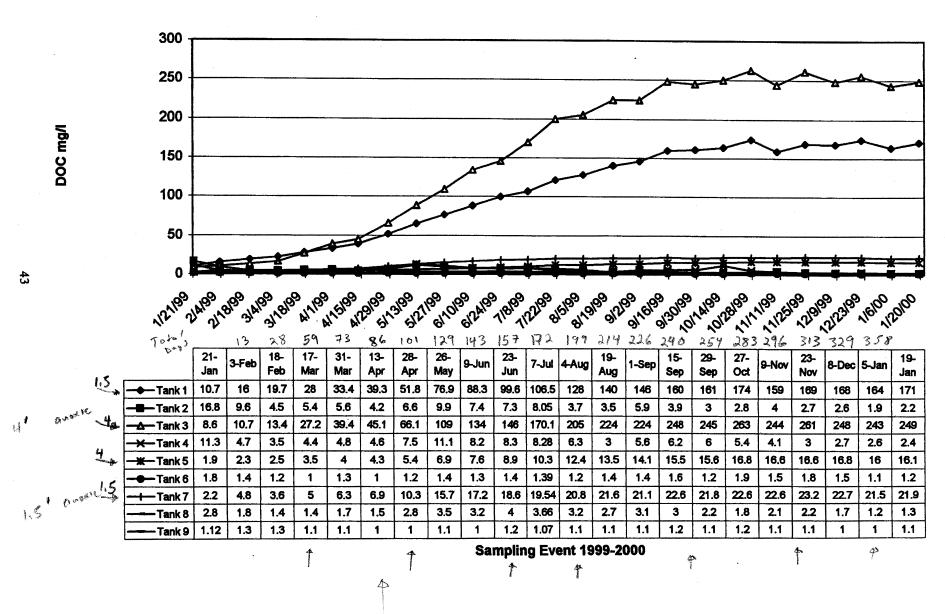


Figure 16. Surface Water UVA-254nm

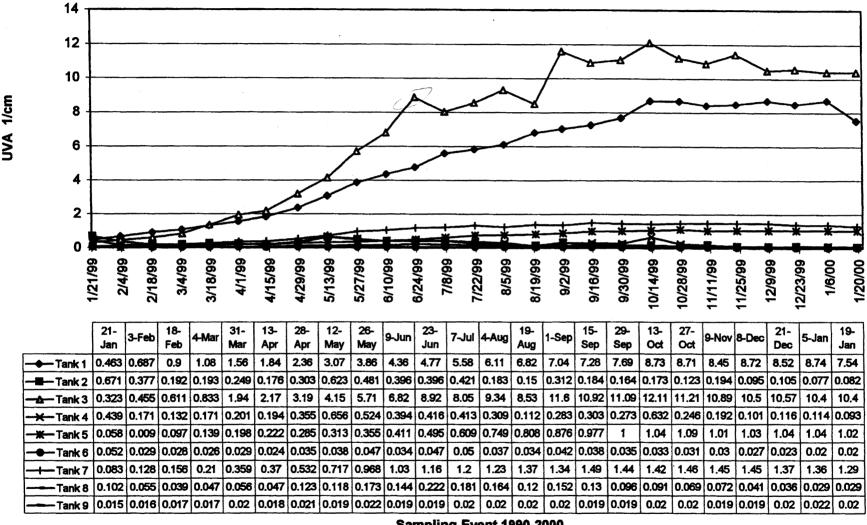


Figure 17. Surface Water TTHMFP

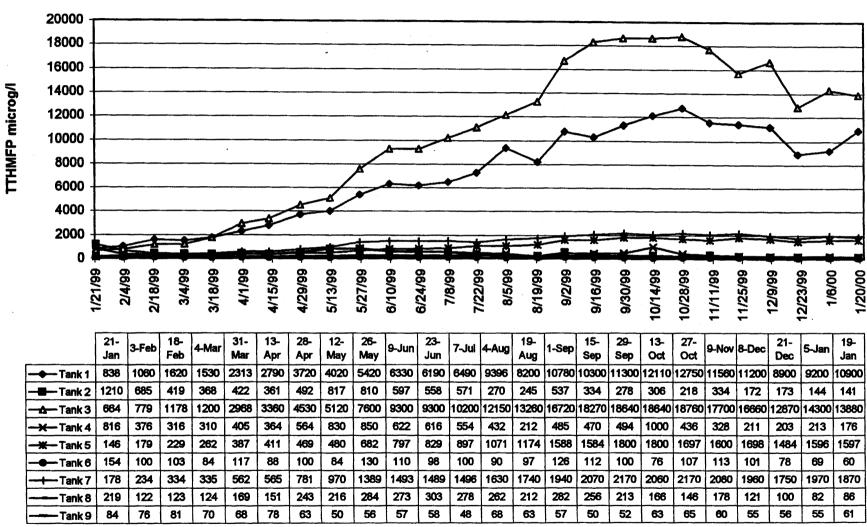


Figure 18. Surface Water Specific Absorbance

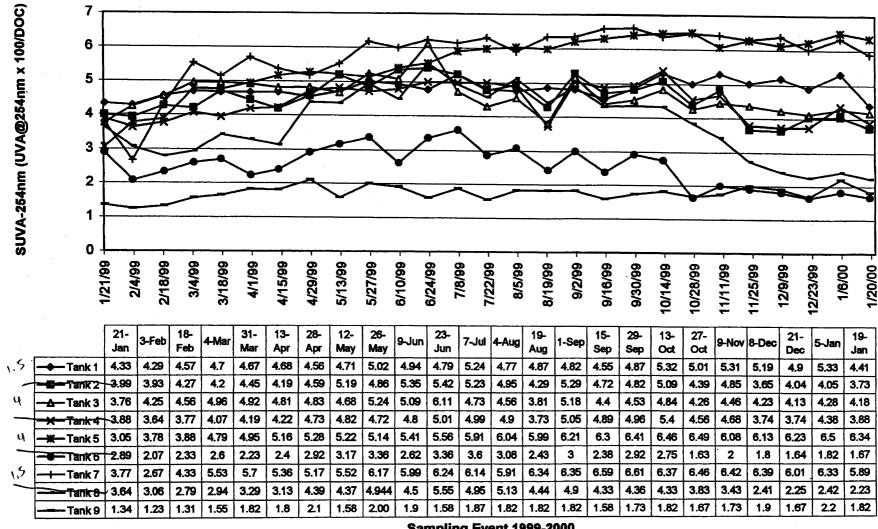


Figure 19. Surface Water Total Phosphorus

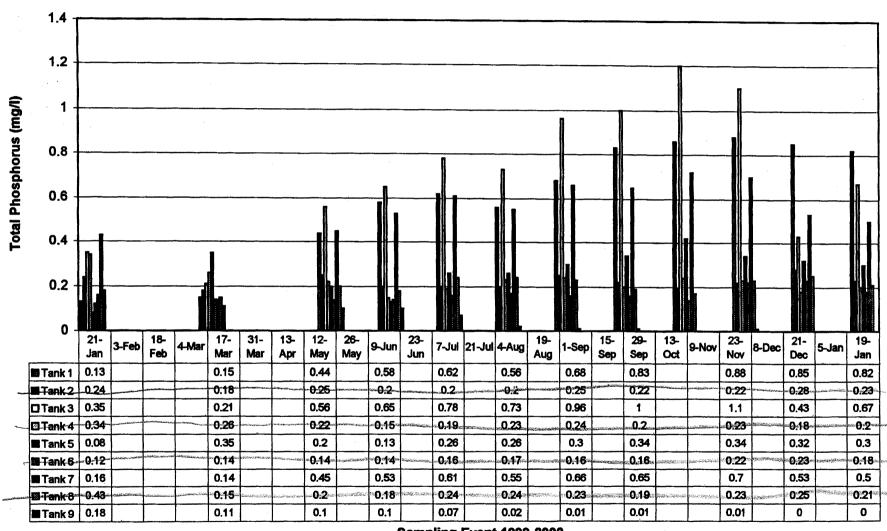
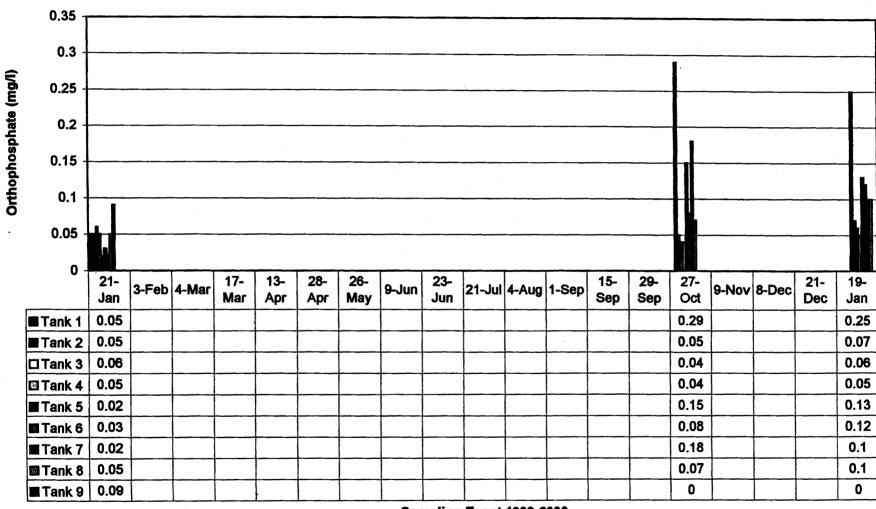
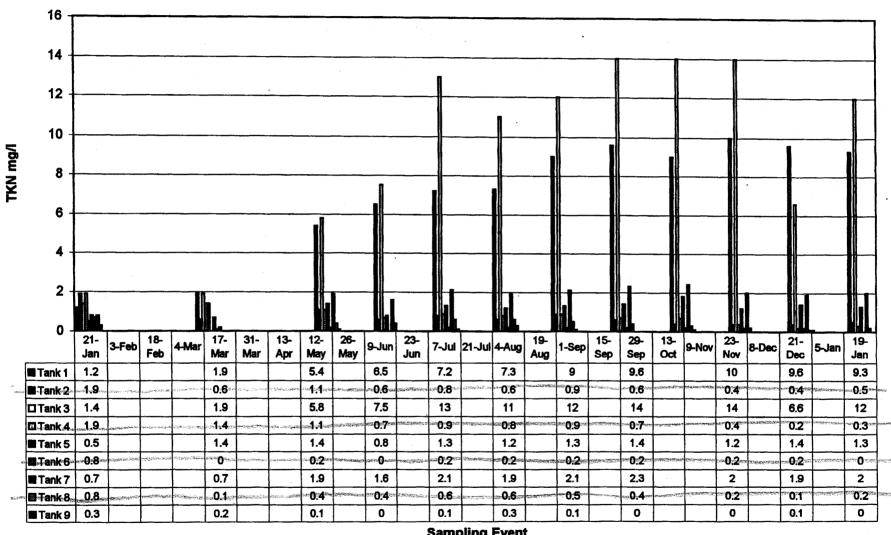




Figure 20. Surface Water Orthophosphate

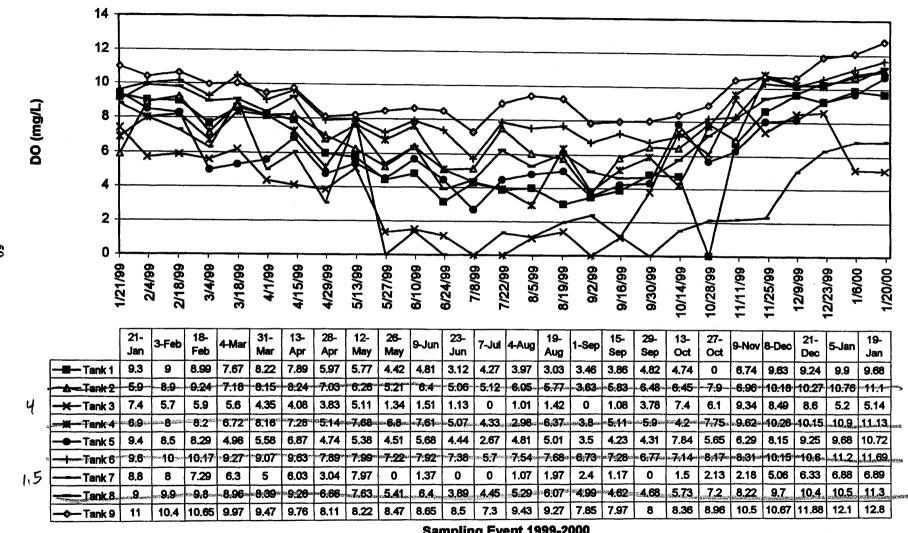

48

Figure 21. Surface Water Total Kjeldalhl Nitrogen

Sampling Event

Figure 22. Surface Water Dissolved Oxygen

and sediment-water boundary. The return to aerobic conditions from an anaerobic state may have also coprecipitated iron oxides and DOC. This would have lowered the DOC and TOC concentrations in the surface water in tanks 1 and 3 in the fall. Peat soil iron concentrations were high in tanks 1-4. Total iron concentrations ranged from 14000 to 17000 mg/Kg at the start of the experiment.

While surface water TOC and DOC concentrations in tanks 1 and 3 stabilized and then decreased in October 1999 to January 2000, the TTHMFP concentrations (Figure 17) and specific absorbance values decreased. These changes suggest a shift in the composition of DOC and TOC in the impounded surface water from more humic-like substances to less refractory compounds. Possible explanations include removal by coprecipitation of humic matter with iron and aluminum oxides, less microbial breakdown of organic matter to THM precursor organic carbon as water temperature decreased, and shifts in microbial community composition and population.

Experiment #2 results were similar to those seen in the first experiment for the tanks with no water exchange and shallow water depths. Tank 3 (4 ft. peat, 2 ft. water) followed by tank 1 (1.5 ft. peat, 2 ft. water), tank 7 (1.5 ft. peat, 7 ft. water), and tank 5 (4 ft. peat, 7 ft. water) had the highest increases in TOC, DOC, THMFP, color, EC, total P, bromide, and alkalinity. Tank 3 DOC was initially 8.6 mg/l in January 21, 1999 and reached 263 mg/l by October 27, 1999. By the end of the study, the DOC was 249 mg/l. The initial DOC concentration in tank 1 was 10.7 mg/l and up to 174 mg/l after ten months of flooding (October 27, 1999). The DOC had stabilized and was 171 mg/l by January 19, 2000. In Experiment #1, the initial DOC in tank 3 was 23.2 mg/l in July 1998 and reached 135 mg/l after ten weeks. In tank 1 of the first experiment, the initial DOC was 8 mg/l and by the tenth week DOC was 39.4 mg/l. Both experimental results showed that peat soils that are flooded significantly raise the concentrations of organic carbon and other water quality constituents in overlying waters, especially in shallow depths with little or no water exchange. The data in the second experiment also showed that recently leached peat soil, such as from heavy rainfall, can remove most of the soluble or weakly absorbed organic carbon from the soil. Thereby, reducing the amount of DOC and THMFP in surface and pore water of waterlogged peat soils. In the Delta, similar observations are seen in drainage water quality after a field is leached or during the wet winter. Winter drainage DOC and THMFP concentrations are higher than during the summer (CDWR, 1990; CDWR, 1994).

Those tanks (2,4,6,8) with continuous flow (i.e., 1.5 surface water volume exchanges per week) had better water quality from dilution and removal (flushing) of buildup of organic matter and nutrients. Tank 2 (1.5 ft. peat, 2 ft. water) initial DOC was 16.8 mg/l and had decreased to about 5 mg/l in four weeks. Tank 4 (4 ft. peat, 2 ft. water) DOC dropped from a starting DOC of 11.3 mg/l to less than 5 mg/l after two weeks.

Surface water samples were taken in July and August for chlorophyll a analyses to determine if algae were growing in the covered tanks. The results indicated that the covers were effective. The high turbidity readings in the surface water were most likely

from decomposing suspended matter and bacteria and the formation of iron and aluminum oxides (Figure 23).

Flooded peat soils can also release nutrients to surface water. Phosphorus and nitrogen loads increased with time in tanks # 1- 4 (Figures 19 - 21 and 24 - 25) and the levels are attributed to the higher starting P and N soil batch concentrations than in the second soil batch used in tanks # 5 - 8. Some levels could be considered as being at eutrophic levels (AWWARF, 1989; Vollenwieder and Kerekes, 1980.) Other data, including surface water color, alkalinity, and pH, are presented in the Appendix.

The last samples that were collected from Experiment #2 were on January 21, 2000. Work was then suspended at the SMARTS facility. The MWQI Advisory Group decided that an extension of the experiment was not necessary. The submersible pumps in the tanks were shut off and water flows to the tanks that had continuously received water during the study were terminated. Water in all the tanks remained stagnant for the next eight months. Although the one-year study ended in January 2000, field measurements and TOC/DOC samples of surface water in the tanks were taken on June 13, 2000 and later on September 7, 2000 (surface and peat soil water). Inspection of the inside of the tanks showed no apparent algae growth or measurable evaporation of water in the nine covered tanks. A comparison of the January 21, June 13, and September 7, 2000 field measurements and laboratory results showed that surface water EC, TOC, and DOC continued to increase under static conditions during the eight-month period after the experiment had officially ended (Table 8). The data suggests that the seasonal trends would have repeated if the full experiment continued into a second year.

The EC, TOC, and DOC levels had appeared to plateau during the last quarter of the experiment (Sept 1999 – January 2000) as water temperatures fell. The June 2000 samples indicated that an annual cycle would have been seen if the experiment had continued for another year. All the tanks that continuously received water exchange for a year (tanks 2,4,6, and 8) showed there was still a supply of organic carbon available. Surface water tank 2 (1.5 ft. peat, 2 ft. water) TOC increased by about 24 mg/l and tank 4 (4 ft. peat, 2 ft. water) TOC by about 47 mg/l during the five-month period of stagnation. Surface water TOC in tank 6 (1.5 ft. peat, 7 ft. water) increased by about 4 mg/l and in tank 8 (4 ft. peat, 7 ft. water) by about 13 mg/l. The differences in the increase of TOC and DOC being attributed to the peat soil mass (soil depth), water depths (2 ft. vs. 7 ft.) and different starting amounts of soluble organic carbon between soil batches 1 and 2 used in tanks 1-4 and 5-8, respectively. Besides different submerged soil batches, the consistently lower values in surface water quality constituents (e.g., TOC/DOC, EC) between tanks 1-4 and 5-8 are also due to the water depth (dilution) differences. Water depths were 2 feet in the former group and 7 feet in the latter. In Experiment #1, we found that a simple mixing ratio to compute dilution of constituents was not applicable for the water depths, constituents, and conditions we studied. This is because many of the constituents that comprise organic carbon, nutrients, and EC are not conservative.

Figure 23. Surface Water Turbidity

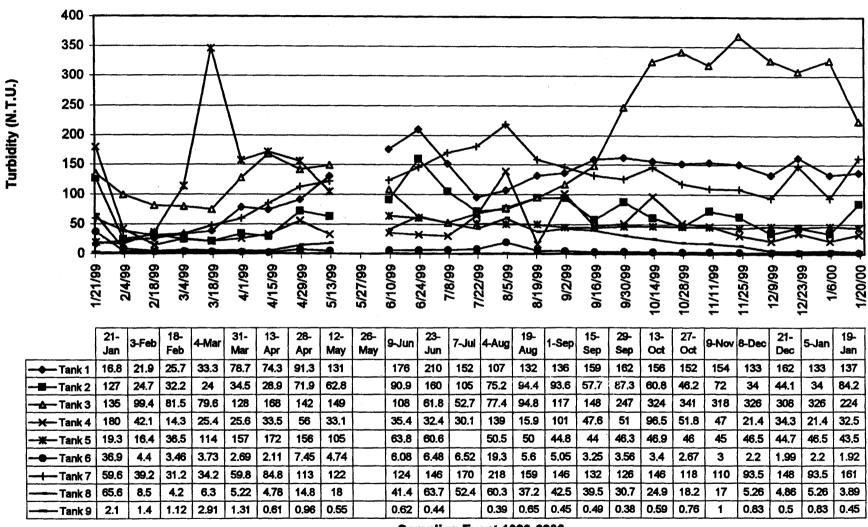
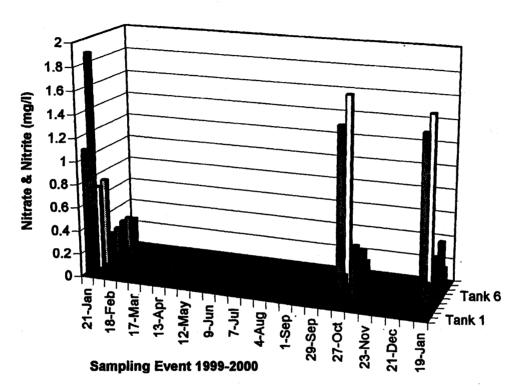



Figure 24. Surface Water Ammonia

Figure 25. Surface Water Nitrate & Nitrite

	21- Jan	3-Feb	18- Feb	4-Mar	17- Ma r	31- Mar	13- Apr	12- May	26- May	9-Jun	23- Jun	7-Jul	21-Jul	4-Aug	19- Aug	1-Ѕер	15- Sep	29- Sep	13- Oct	9-Nov	23- Nov	8-Dec	21- Dec	5-Jan	19- Jan
Tank 1	1.1																								1.5
Tank 2	1.9																								0.26
□Tank 3	0.72																								1.6
☑ Tank 4	0.75																								0.31
Tank 5	0.24																								0.37
Tank 6	0.25																								0.16
■Tank 7	0.28																								0.43
Tank 8	0.28																								0.17

Table 8. Comparison of January, June, and September 2000 Samples

Surface water samples

	Tank	Tank	Tank	Tank	Tank	Tank	Tank	Tank	Tank
	1	2f	3	4f	5	6f	7	8f	9
TOC1	173	2.4	259	2.7	18.5	1.4	29.2	1.4	1.2
TOC2	218	26.3	329	49.9	22.1	5.8	33.5	14.6	1.5
TOC3	237	40.9	354	81.8	26.4	9.3	31.5	17.2	1.4
DOC1	171	2.2	249	2.4	16.1	1.2	21.9	1.3	1.1
DOC2	219	26.2	322	48.3	21.5	5.5	30.7	14.1	1.6
DOC3	242	40.7	370	79.6	27.3	8.8	30.5	17.1	1.3
Temp1	13.9	11.7	12.2	11.7	11.5	11.3	11.4	11.3	11.1
Temp2	25.1	26.1	25.6	26.3	27.3	28.2	28.7	29.1	29.2
Temp3	20.8	21.3	20.3	21.2	22.2	22.3	22.1	22.7	22.6
EC1	992	193	1755	193	277	189	246	190	189
EC2	1330	382.2	2278	603	301	195	282	266	205
EC3	1485	449	2455	780	290	176	295	299	203
DO1	9.68	11.1	5.14	11.13	10.72	11.69	6.89	11.3	12.8
DO2	2.54	2.7	1.58	<1	1.55	1.7	1.3	<1	3.4
DO3	4.8	4.03	3.69	2.58	3.86	4.5	2.57	3.03	6.2
PH1	7.26	7.45	7.44	7.54	7.41	7.2	7.18	7.26	7.86
PH2	7.03	6.98	7.29	6.92	6.78	6.97	7	6.92	7.37
PH3	7.21	7.21	7.45	7.26	7.17	7.17	7.6	7.23	7.54
Turb1	137	84.2	224	32.5	43.5	1.92	161	3.89	.45
Turb2	33.5	32.5	281	33.3	29.1	7.15	94.3	34.1	.42
Turb3	134	26.2	347	50.3	33.2	31.3	61.6	14.6	0.65

TOC and DOC and DO (dissolved oxygen) in mg/l. EC in μ S/cm

Temp refers to water temperature °C

Turb refers to turbidity in ntu

1 refers to January 21, 2000 value.

2 refers to June 13, 2000 value.

3 refers to September 7, 2000 value.

Note test conditions. Water flows and circulation pumps inside all tanks were stopped on January 21, 2000. All tanks remained covered. No evidence of algal blooms or evaporation when surface water samples were taken on June 13 and September 7, 2000. Tank 9 was a control tank with no peat soil but filled with city tap water.

Tank Comparisons

The experimental tanks were paired to compare differences from the effects of surface water exchange. The odd numbered tanks had no water additions after filling. The even numbered tanks continuously received water at the rate of 1.5 surface water volume exchanges per week. Because two dissimilar soil batches were used, we are unable to compare the effects of different water depths (2 vs. 7 ft.) in tanks with the same soil batch. However, these comparisons were performed in the three-month 1998 Experiment #1 study, where one single soil batch was used. Those results showed that water depth did dilute the concentrations of constituents but not in a straightforward simple mixing ratio based on water depth. The measured constituents such as TOC, DOC, and EC did not behave conservatively. Components of these constituents consist of both conservative and non-conservative fractions.

The Experiment #2 tank pairs and conditions are shown below:

Tank Pair	Peat soil	Peat soil batch	Water
Tanks	depth		depth
1 and 2	1.5 ft.	1 (high soluble organic carbon)	2 ft.
3 and 4	1.5 ft.	1 (high soluble organic carbon)	2 ft.
5 and 8	4 ft.	2 (low soluble organic carbon)	7 ft.
6 and 7	4 ft.	2 (low soluble organic carbon)	7 ft.

The general seasonal trend observed in peat water samples in all the 8 tanks was that DOC, TTHMFP, and EC levels behaved similar. Concentrations increased sharply through the spring and began declining in the summer (Figures 26-37). The trend was independent of the soil batch (high vs. low soluble organic carbon) and soil layer depth (1.5 vs. 4 ft.) that was flooded and water depths (2 vs. 7 ft.). Surface water DOC, TTHMFP, and EC in the tanks (#1,3,5,7) that received no water exchange also had a similar pattern, where the levels increased gradually to late October before stabilizing (about less than 10% change from previous measurement). These same constituents increased and peaked in May before declining in tanks (#2,4,6,8) that had water exchanges.

The declining DOC, TTHMFP, and EC levels in the peat soil water in the second half of the year and the gradual increases seen in the surface water suggest that a dynamic equilibrium was in progress between the surface and soil waters. A comparison of the surface and peat soil water quality at the end of the one-year experiment (1/21/00) is shown in Table 9.

Two sampling events occurred later to see if these constituent concentrations had changed after the circulation pumps and water exchanges were terminated. These later samplings (6/13/00 and 9/7/00), therefore, occurred under stagnant conditions in the tanks for up to eight months. The results of these additional samples for DOC and EC are included in Figures 26-29 and 34-37, respectively. Surface and peat soil water samples were collected except at the June 13, 2000 event. The measurements included the

standard field parameters (EC, temperature, DO, pH, turbidity), TOC, DOC, UVA254nm, and ammonia. The results are included in the Appendix.

The additional two samplings taken after the experiment ended suggest that under stagnant conditions there could be a repeat of the seasonal trend seen in the first year. Organic carbon and mineral salts were still available from the peat soil. Surface water DOC and EC continued to increase from the degradation of peat and the diffusion of the peat soil water constituents. Peat soil water DOC generally increased during the eightmonth stagnant period. Surface water EC had increased and peat soil water EC declined. It appears that organic carbon had not been completely leached out from the peat even in the case of the second soil batch, which produced low DOC concentrations in the study. DOC continued to originate from the twenty-month submerged peat while some EC constituents were leached from the soil. The data also showed that EC alone cannot be used as a reliable predictor of DOC movement and mechanisms in the Delta islands.

Table 9. End of Year One Sample DOC, TTHMFP, and EC Results

January 19-20, 2000 samples

Tank #	1	2	3	4	5	6	7	8
Peat Soil Water DOC	460	225	332	251	35	30.6	42.2	77.5
Surface Water DOC	171	2.2	249	2.4	16.1	1.2	21.9	1.3
Peat Soil Water THMFP	28100	17700	21400	17100	3050	2580	3470	5300
Surface Water TTHMFP	10900	141	13880	176	1597	60	1870	86
Peat Soil Water EC	2974	2198	3292	2881	689	620	1036	1294
Surface Water EC	992	193	1755	193	277	189	246	190

DOC in mg/l, TTHMFP in μ g/l, and EC in μ S/cm . Study began January 13, 1999.

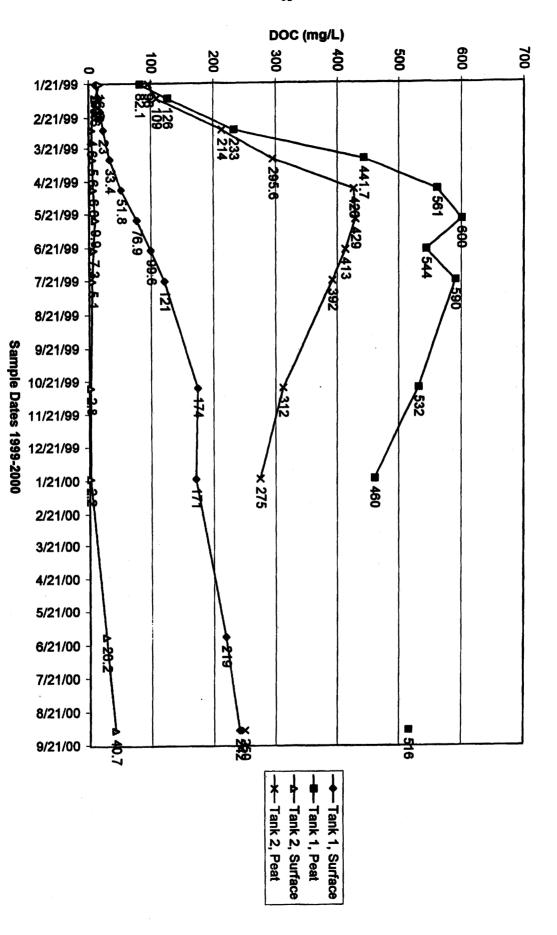


Figure 26. Tanks 1 & 2 DOC

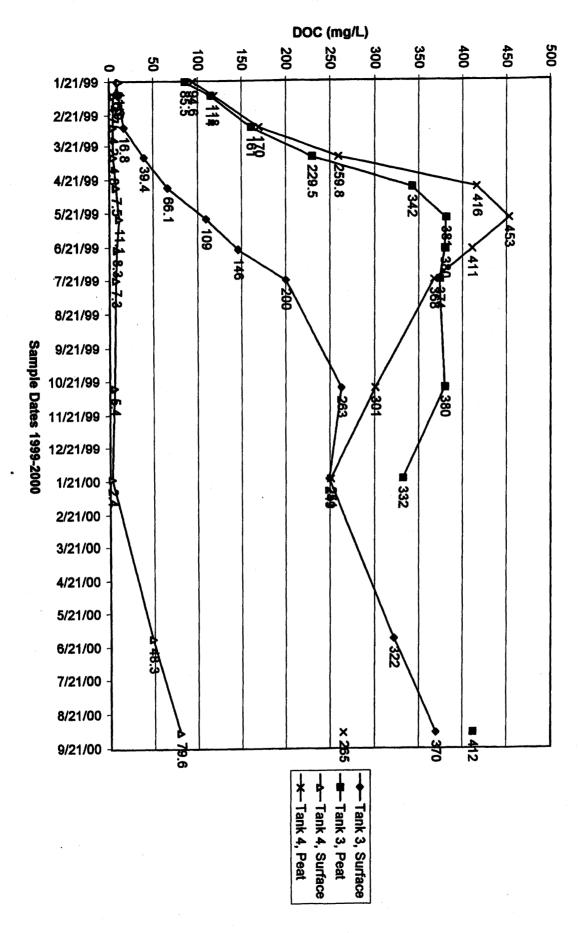
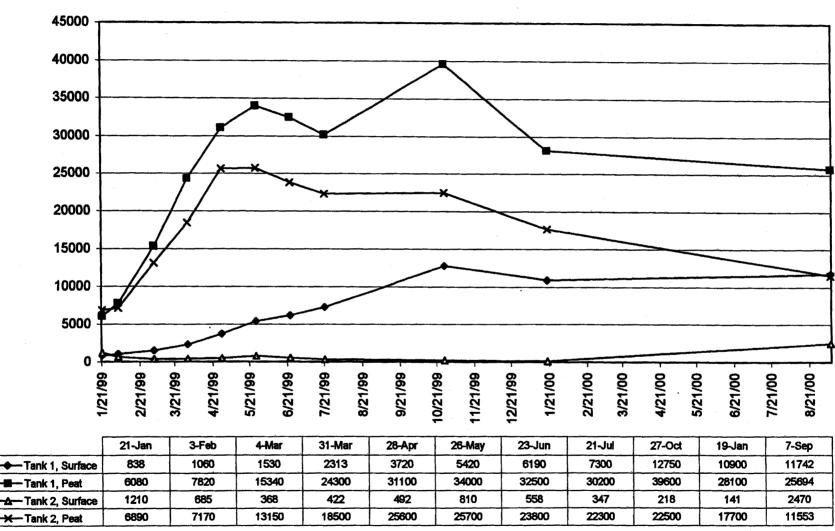


Figure 27. Tanks 3 & 4 DOC

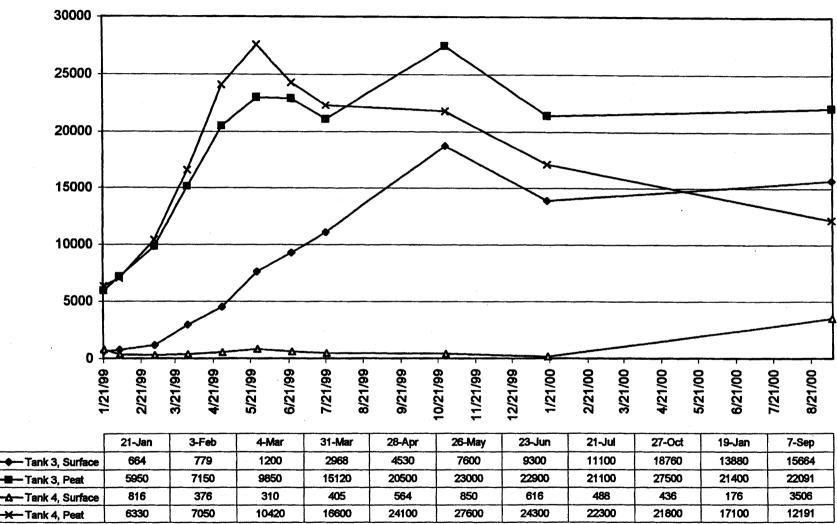
-Tank 5, Surface -a-Tank 8, Surface -Tank 5, Peat -x-Tank 8, Peat 27.3 17.1 9 8/21/00 7/21/00 00/12/9 9/21/00 4/21/00 3/21/00 2/21/00 × 71.5 1/21/00 12/21/88 11/51/68 10/21/66 66/12/6 8/21/88 66/17/2 66/12/9 66/12/9 66/LZ/> × 63 (47.1 3/21/69 5/21/88 4/21/86 00 **4** 8 5 120 DOC (mg/L)


Figure 28. Tanks 5 & 8 DOC

-∎-- Tank 6, Peat -Δ-- Tank 7, Surface -Tank 6, Surface -x-Tank 7, Peat × 52.5 9/21/00 8/21/00 7/21/00 00/12/9 9/21/00 4/21/00 3/21/00 2/21/00 × 42.2 1/51/00 12/21/88 11/21/99 10/21/66 66/1Z/6 8/21/86 4/21/86 66/12/9 66/12/9 4/21/88 3/21/68 32.4 5/21/88 1/51/66 10 DOC (mg/L) 8 2 00 20

Figure 29. Tanks 6 & 7 DOC

TTHMFP (microg/L)


Figure 30. Tanks 1 & 2 TTHMFP

Sample Dates 1999-2000

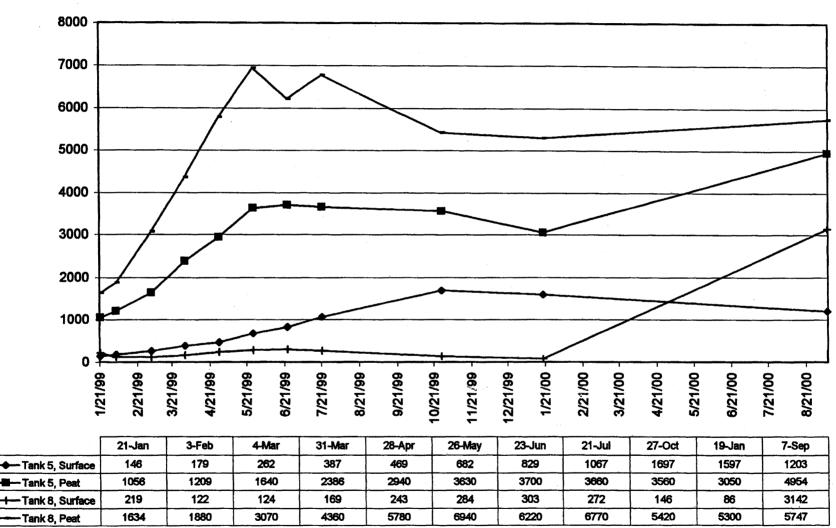


Figure 31. Tanks 3 & 4 TTHMFP

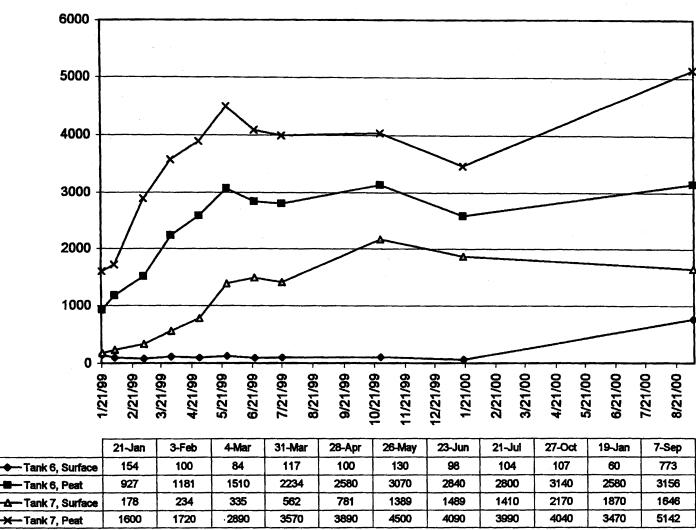

Sample Dates 1999-2000

Figure 32. Tanks 5 & 8 TTHMFP

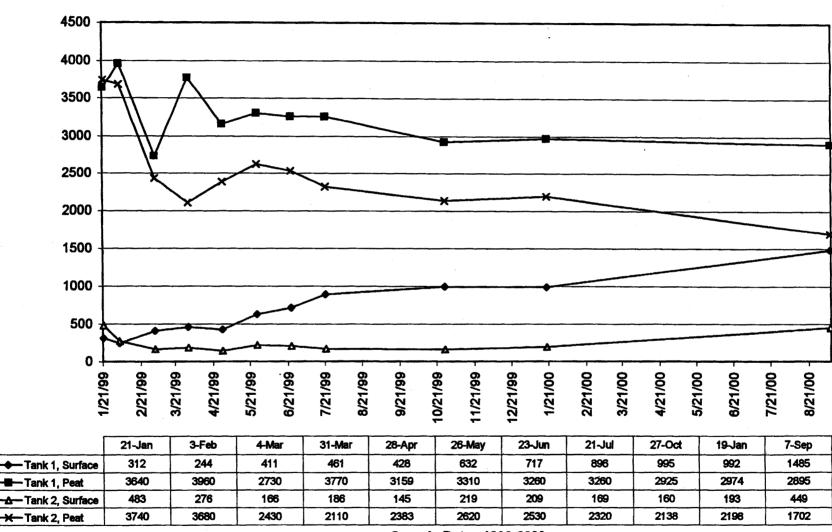
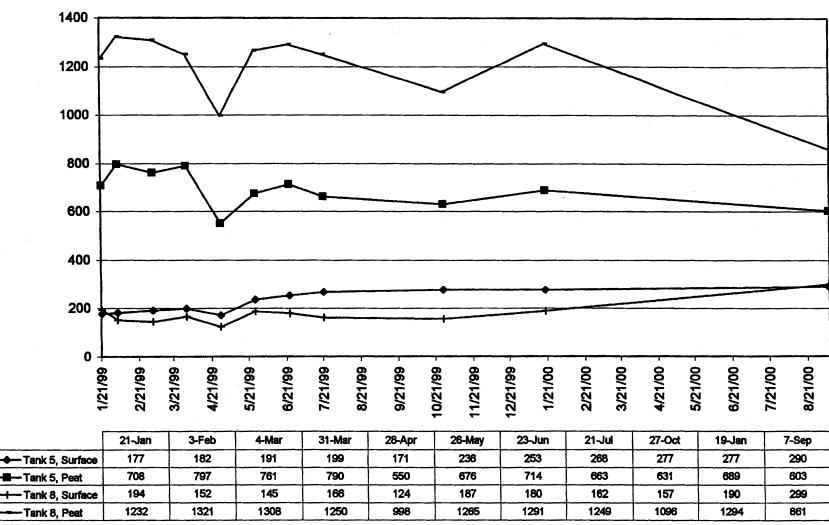

Sample Dates 1999-2000

Figure 33. Tanks 6 & 7 TTHMFP

Sample Dates 1999-2000

Figure 34. Tanks 1 & 2 EC


Sample Dates 1999-2000

EC (microS/cm)

68

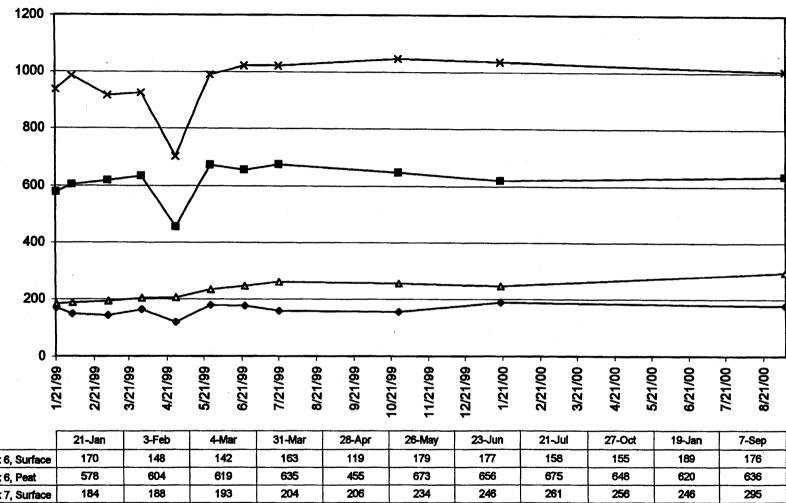

Sample Dates 1999-2000

Figure 36. Tanks 5 & 8 EC

Sample Dates 1999-2000

Figure 37. Tanks 6 & 7 EC

	21-Jan	3-Feb	4-Mar	31-Mar	28-Apr	26-May	23-Jun	21-Jul	27-Oct	19-Jan	7-Sep
—← Tank 6, Surface	170	148	142	163	119	179	177	158	155	189	176
—■—Tank 6, Peat	578	604	619	635	455	673	656	675	648	620	636
	184	188	193	204	206	234	246	261	256	246	295
──── Tank 7, Peat	936	985	915	924	702	990	1021	1021	1046	1036	1006

Sample Dates 1999-2000

Data Validation

Data scatter or anomalies often occur in nature because of stochastic and deterministic processes. There is randomness in measurements and random errors occur from sampling and laboratory analyses. Duplicate samples and analyses for each sample are prohibitively expensive and unnecessary. The quality of results can be established to be consistently good through field and laboratory QA/QC procedures. In this study, at each sampling event, a blind duplicate was given to the laboratory from one of the tank samples chosen at random. Field blanks were given to check for sample contamination during sampling.

Sample duplicates are environmental samples divided into two separate aliquots and analyzed independently to determine the repeatability of the analytical method. The relative percent difference (RPD) of the duplicate results must fall within established control limits. The results for the DWR Bryte Laboratory are summarized below. All of the sample duplicate analyses that were performed were reviewed. While most duplicates fell within the control limits, the highest RPDs occurred in analyses for particulate matter samples (e.g., TOC, TKN, TP), which typically have the widest variation among all analytes. The greater RPDs are attributed to the collection of the samples and nonhomogeneous mixing or distribution rather than problems with precision and accuracy. Internal laboratory quality control measures, such as matrix spikes and method blanks, were used in conjucntion with RPDs of the duplicate samples to determine if the batch of samples had acceptable results. No samples were rejected on the basis of recoveries or RPDs outside of the limits. Data for the non-duplicate samples were used in the data analysis. The duplicate sample values of each sampling event are presented with the data in the Appendix.

The most important water quality constituents of interest in this study, which included organic carbon, UVA_{254nm}, total alkalinity, bromide, and TTHMFP, had the best recoveries. The RPD and field blank results supplemented with internal QC and calibration of the laboratory and field instruments, give us some idea of the precision and accuracy of the measurements. Based on these data and the observed data trends, we are confident about the results, including concerns about taking single water samples.

Field Blank Recoveries

Analyte	Reporting Limit	Total Analyses Reviewed	Recoveries Outside of Limits	Recoveries Outside of Limits (%)
Total Kjeldahl Nitrogen	0.1	17	1	6
Total Phosphorus	0.01	18	2	11
Dissolved Ammonia	0.01	27	0	0
Ortho-phosphate	0.01	2	0	0
Total Iron	0.005	26	1	4

Drinking Water Pre-Treatment Constituents

Analyte	Acceptance RPD (%)	Method (EPA)	Total Analyses	Recoveries Outside Limits	Frequency of Samples Out of Limits (%)
TOC	15	415.1(T)	27	7	26
DOC	15	415.1(D)	27	0	0
UVA	15	415.1(D)	27	2	7
Alkalinity	15	2320B	12	0	0
Bromide	15	300	12	0	0

Nutrient Constituents

Analyte	Acceptance RPD (%)	Method (EPA)	Total Analyses	Recoveries Outside Limits	Frequency of Samples Out of Limits (%)
Ammonia	15	350.1	27	5	19
Nitrate + Nitrite	30	4500-NO3-F (modified)	3	0	0
Total Kjeldahl Nitrogen	30	351.2	12	3	25
Orthophosphate	30	4500-P-F	3	0	0
Total Phosphorus	30	365.4	12	0	0

Treated Drinking Water Constituents

Analyte	Acceptance RPD (%)	Method (EPA)	Total Analyses	Recoveries Outside Limits	Frequency of Samples Out of Limits (%)		
Bromodichloromethane	20	**	27	0	. 0		
Bromoform	20	**	27	0	0		
Chloroform	20	**	27	0	0		
Dibromochloromethane	20	**	27	1	4		
Total THMFP	20	**	27	0	0		

^{**}DWR THMFP Reactivity Test (7 day)

Discussion

When soil comes in contact with water, there are physical, chemical, and biological interactions that release particulate matter and dissolved constituents into the water. The major processes by which material is released to water include water erosion, decomposition, dissolution, desorption, and oxidation-reduction reactions. Processes that remove material from water include sedimentation, immobilization (uptake), precipitation, and sorption. The seasonal water quality changes that were observed in the surface water and peat soil pore water were attributed to these processes.

There were seasonal patterns in TOC/DOC concentrations in the simulated flooded peat soil environment. The trend appears to be related to seasonal temperature affects on microbial activities in the flooded peat soil and water. Microbes (e.g., bacteria, fungi) breakdown the organic matter and the rate roughly doubles or quadruples for every ten degrees rise in temperature. TOC/DOC production and buildup was slowest in the cold winter and rapidly increased in the warm spring and hot summer months. The TOC/DOC concentrations remained steady through the fall as temperatures began declining.

This study and the extensive list of papers cited show that organic matter degradation is a continuous process in flooded peat soil environments. Organic matter decomposition does not require oxygen. Anaerobic bacteria in the reduced environment will utilize other inorganic compounds (e.g., sulfate) as electron acceptors to breakdown organic matter. The porosity of peat soil and natural tendency to reach a chemical equilibrium through molecular diffusion causes soil water quality to affect the overlying surface water quality in a flooded wetland. Degradation is slower but never ceases in the reduced environment unless temperatures fall below 5°C. As a result, soluble organic matter accumulates in this large soil layer. The anaerobic soil layer, therefore, holds and provides a steady supply of organic matter and nutrients.

Anaerobic bacteria growth (non-photosynthetic) and associated processes (e.g., organic fermentation of organic carbon) and the physical process of equilibrium are independent of light. Photo-degradation plays a small role relative to other processes such as microbial degradation on organic carbon transformations, especially in the turbid Delta waters.

Predicting the water quality impact or organic carbon loading from flooded lands cannot be determined by soil organic carbon (SOC) analyses alone. Soil organic carbon consists of weakly bound and strongly bound fractions. Peat soils of similar SOC concentrations can have significantly different proportions of these two fractions. It is the weakly bound or weakly adsorbed colloidal organic carbon fraction that becomes the dissolved organic carbon when in contact with water. The data (e.g., specific absorbance and TTHMFP) showed that the DOC from submerged peat soil were humic and contained THM precursors. The strongly bound organic fraction eventually degraded and became a source of DOC during the study.

New or other soil test methods that involve filtration or centrifuging wet soil sample extracts for DOC and other constituents (e.g., iron, manganese) are needed to supplement SOC analyses to assess the "DOC formation potential" of a submerged soil. SOC data cannot serve as a reliable indicator of DOC release from wet soils. Two soil batches of similar SOC concentration in Experiment #2 were significantly different in their contribution of DOC to water primarily because of recent exposure to different environmental conditions prior to flooding.

The constraints of the SMARTS facility limited the experiments to studying only three factors that could affect seasonal water quality in a shallow flooded peat soil environment. The three factors were surface water depth, surface water exchange rate, and peat soil depth. All three were determined to be controlling factors. Other contributing factors, such as wetland plants and primary productivity, were not addressed and are probably better studied in the field. The high eutrophication potential (e.g., nutrient concentrations) seen in some of the experimental tanks could result in additional seasonal increases in organic carbon production in wetlands and become the dominant source of carbon as the wetland matures. The exclusion of studying organic carbon production from algae and higher plants does not lessen the value of the SMARTS study. Some wetland areas will be barren (>4 ft. deep) and partially vegetated so these results are still representative of the non-vegetated areas. The results also show the potential contribution of organic carbon, nutrients, and minerals from flooded Delta islands.

From the perspective of protecting drinking water quality, wetland management and planning schemes may need to adjust water depth, water exchange rates, timing and duration of flooding to minimize organic carbon levels. This may conflict with desired wetland designs for maximizing ecological benefits. Most biologically productive wetlands have large shallow (1.5-2 feet) areas that are permanently flooded. Water depths over 4 feet are usually too deep for wetland plants to become established.

The poorest water quality occurred under conditions of shallow water depth (2 ft.) and no surface water exchange. Those tanks that continuously received an exchange of new water at the rate of 1 to 1.5 surface water volumes per week had water quality similar to the incoming water supply due to constant dilution and flushing.

Shallow peat soil layers (1.5 and 4 feet deep) that had been submerged (2 and 7 feet) and had continuous surface water exchanged for a year, continued to release DOC eight months after the second experiment ended. Samples taken five months (6/21/00) and eight months (9/7/00) after the one-year study ended (12/21/99) strongly suggest that the seasonal cycle would repeat itself and that organic carbon was still available from the peat soil as the biogeochemical processes were repeated.

Iterations of the SMARTS experiments or similar experiments are needed to relate different Delta soils and conditions to DOC availability. The soils used in the study were taken from Twitchell Island, which is managed by DWR. Testing soil from other soil locations could yield different results because of spatial and temporal variations in Delta soils. As the peat decomposes and soil moistures change, the network of cracks.

crevices, and macropores shrink and swell. These natural changes in soil structure affect leaching and flux rates of solute transport (Chertkov and Ravina, 1999; Nemati et. al., 2000; Perret et. al., 1999; Perret et. al., 2000). The study of solute leaching (De Rooji and Stagnitti, 2000; Larsson and Jarvis, 2000; Perret et. al., 2000; Ren, et. al., 2000; Si and Kachanoski, 2000) requires more than simple gross measurements of soil porosity or bulk density, which do not provide true flux measurements. Besides differences in soil structure, there will be changes in mineral and organic composition from weathering and farming.

The last extensive soil survey of the Delta was conducted sixty years ago and showed a mosaic of different mineral and organic soil types (USDA, 1941). Soil and pore water measurements that contained DOC data are few (e.g., Twitchell, Holland) and incomparable to the SMARTS peat water data due to unknown soil-to-water contact times of the field samples as well as soil differences and land use conditions. More soils related data are needed to determine what are the characteristics and variability of typical Delta soils.

The results of the study and literature review have identified some potential actions that may help reduce the impacts on the drinking water quality of the Delta, in particular, DOC loads, from converting agricultural lands to shallow wetland habitats. They include:

- 1. Considering soil type and characteristics of proposed wetland sites. Areas with mineral soils have less organic matter than organic peat soils in the Delta. This should result in less availability of DOC when flooded. Prior land use history also affects the soil characteristics (Hontoria, et. al., 1999).
- 2. Reducing plant matter in fields prior to initial flooding. As plant residues are submerged, cellulose material decomposes and contributes to the levels of DOC. Over time, the more resistant lignin fractions remain and decompose more slowly. Initial DOC concentrations can be lowered by removing or enhancing (tilling) the breakdown of crop residues in the fields (Bergman, et. al., 2000; Zak, et. al., 1999).
- 3. Plowing agricultural soils prior to initial flooding to increase oxidation of peat soil to reduce the soil organic carbon content. Non-tilled field studies (Cronan, et. al., 1999; Mahieu, et. al., 1999; Rhoton, 2000; Rochette and Angers, 1999; Schomberg and Jones, 1999; Steiner, et. al., 1999; Studerdert, et. al., 2000; Wander, et. al., 1999) show that soil organic carbon accumulated because of slower decay of crop root residues than in tilled fields. By plowing the fields in the warm summer and fall months, carbon loss via carbon dioxide releases from microbial decay will reduce the organic carbon concentrations in peat soils planned for inundation. Tilling during the cooler months was less effective in organic matter breakdown (Rhochette and Angers, 1999). Compaction of the soils prior to flooding could result in more soil organic carbon and DOC in the pore water. Plowing also disrupts the preferential flow pattern of surface water through

soil (Ogden, et. al., 2000). Disturbance of the soil macropore networks may reduce the leaching and diffusion rates of solutes in the soil column (De Rooji and Stagnitti, 2000; Perret, et. al., 1999). Land on or adjacent to the levees, however, should not be plowed as this would increase subsidence and erosion of the levees.

- 4. Flooding and removing drainage from agricultural fields prior to long-term inundation. Weakly adsorbed organic matter and minerals can be desorbed from the soils by rainfall, irrigation, or ponding (Kaiser and Zech, 1999). Removal of the drainage from these events will reduce the high DOC and EC laden pore water from the fields prior to permanent flooding.
- 5. Managing flushing and subsurface water flows. Stagnant conditions, such as in confined, non-tidal wetlands, can lead to a buildup of DOC, nutrients, and EC over time. Subsurface flow (e.g., seepage) would reduce the soil-to-water contact time in the peat soil that allows these increases. Water exchange would dilute and disperse these constituents.
- 6. Minimizing repeated wet and dry cycles of wetland soils. Studies of the effects of wetting and drying wetland soils show that alternating oxidation-reduction conditions can increase DOC and nutrient concentrations in the pore waters (Franzluebbers, et. al., 2000; Borken, et. al., 2000). The availability of DOC from re-wetted, exposed wetland surface soils was demonstrated in saturated paste extracts from a two-year old Holland Tract pond site (Jones and Stokes, 1995). Pore water DOC concentrations had doubled from an average starting value of 32 mg/l to about 69 mg/l after a 30 day holding time. There does not appear to be a leaching out of organic carbon from submerged peat.

Due to different field conditions and the manner in which each of the proposed actions are implemented alone or in combination, further studies should be directed on determining what are the most effective methods and how they should be conducted.

Conclusion

The experiments showed that for the protection of drinking water quality, the manipulation or selection of criteria for designing and operating confined wetlands or shallow water storage reservoirs should evaluate peat soil characteristics and flooding depths, water exchange rates, timing and duration of storage and releases, and applied water quality.

Peat soil is a rich source of organic carbon and nutrients. Under certain conditions of flooding and containment (e.g., nontidal), the floodwater concentrations of organic carbon, trihalomethane formation potential, EC, and nutrients can reach high concentrations. Municipal water utilities are concerned about these potential increases. Higher TOC levels in the Sacramento-San Joaquin Delta would force the use of more chemical coagulants at downstream municipal water treatment plants to meet new USEPA drinking water regulations for water supply TOC limits at their intakes.

Six proposed actions were developed for incorporation in a plan that restores agricultural land in the Delta to shallow wetland habitats. The combined actions could help reduce soil organic carbon and DOC availability in the fields prior to flooding and enhance the dilution and dispersion of organic carbon and nutrients released from the inundated soils. They are:

- 1. Selecting proposed wetland sites with low organic carbon release potential;
- 2. Removing crop residues in the fields prior to initial flooding;
- 3. Plowing the fields during the warm months prior to initial flooding (Note: Land on or adjacent to the levees, however, should not be plowed as this would increase subsidence and erosion of the levees.);
- 4. Flooding and draining the fields prior to long-term flooding;
- 5. Allowing water exchanges and movement across the wetlands; and
- 6. Minimizing repeated wet and dry periods on the wetlands.

The effectiveness of each action and in combination with each other are expected to vary with different field conditions and how the actions are conducted. Further studies can provide specific guidance on the best operating procedure for each action.

The study did not examine the contribution of organic matter from algae and higher plants, which may surpass that from peat soil as the wetlands develop.

References

American Society for Testing and Materials (ASTM). 1995. D 2974-87 (Reapproved 1995) Standard Test Methods for Moisture, Ash, and Organic Matter of peat and Other Organic Soils. ASTM, Pa.

American Water Works Research Foundation. 1989. Reservoir Management for Water Quality and THM Precursor Control. December 1989.

Bergman, I., Lundberg, P. Preston, C.M., and M. Nilsson. 2000. Degradation of 13C-U-Glucose in *Sphagum majus* Litter: Responses to Redox, pH, and Temperature. Soil Sci. Soc. Am. J. 64:1368-1381.

Billen, G., P. Servais, and A. Fontigy. 1988. Growth and mortality in bacterial populations dynamics of aquatic environments. Arch. Hydrobiol. Beih. Ergebn. Limnol. 31:173-183.

Borken, W., Xu, Y.-J., Brumme, R., and N. Lamersdorf. 1999. A Climate Change Scenario for Carbon Dioxide and Dissolved Organic Carbon Fluxes from a Temperate Forest Soil: Drought and Rewetting Effects. Soil Sci. Soc. Am. J. 63:1848-1855.

California Department of Water Resources. 1990. Delta Island Drainage Investigation Report of the Interagency Delta Health Aspects Monitoring Program. A summary of observations during consecutive dry year conditions. Water years 1987 and 1988. June 1990.

California Department of Water Resources. 1994. Five-Year Report of the Municipal Water Quality Investigations Program. Summary and Findings During Five Dry Years January 1987 – December 1991. November 1994.

Carlson, R.E. 1977. A trophic index for lakes. Limno. Oceanog. 22:361-369.

Chertkov, V.Y. and I. Ravina. 1999. Tortuosity of Crack networks in Swelling Clay Soils. Soil Sci. Soc. Am. J. 63:1523-1530.

Christensen, B.T. and P.A. Malmros. 1982. Loss-on-ignition and carbon content in a beech forest soil profile. Holartic Ecol. 5:376-380.

Connell, W.E. and W.H. Patrick, Jr., 1968. Sulfate reduction in soil: Effects of redox potential and pH. Science. 159(3810):86-87.

Cronan, C.S., Piampiano, J.T., and H.H. Patterson. 1999. Influence of Land Use and Hydrology on Exports of Carbon and Nitrogen in a Maine River Basin. Jour. Environ. Qual. 28:953-961.

D'Angelo, E.M. and K.R. Reddy. 1994. Diagenesis of organic matter in a wetland receiving hypereutrophic lake water: I. Distribution of dissolved nutrients in the soil and water column. Jour. Environ. Qual. 23:928-936.

DeBusk, W.F. and K.R. Reddy. 1998. Turnover rate of detrital organic carbon in a nutrient-impacted Everglades marsh. Soil. Sci. Soc. Am. J. 62:1460-1468.

De Rooij, G. H. and F. Stagnitti. 2000. Spatial Variability of Solute Leaching: Experimental Validation of a Quantitative Parameterization. Soil Sci. Soc. Am. J. 64:499-504.

Dixon, W.J. 1986. Extraneous Values. In: Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods – Agronomy Monograph no. 9 (2nd Edition), Soil Science Society of America, WI.

Engler, R.M. and W.H. Patrick, Jr.. 1974. Nitrate removal from floodwater overlying flooded soils and sediments. Jour. Environ. Qual. 3(4):409-413.

Franzluebbers, A.J., Haney, R.L., Honeycutt, C.W., Schomberg, H.H., and F.M. Hons. 2000. Flush of Carbon Dioxide Following Rewetting of Dried Soil Relates to Active Organic Pools. Soil Sci. Soc. Am. J. 64:613-623.

Gambrell, R.P., R.D. DeLaune, and W.H. Patrick, Jr. 1991. Redox processes in soils following oxygen depletion. In: Plant life under oxygen deprivation. M.B. Jackson, D.D. Davies, and H. Lambers (eds.) SPB Academic Publishing, The Hague, The Netherlands. pp 101-117.

Gilmour, C.M., F.E. Broadbent, and S.M. Beck. 1977. Recycling of carbon and nitrogen through land disposal of various wastes. In: L.F. Elliott and F.J. Stevenson (ed.) Soils for management of organic wastes and wastewaters. Soil Sci. Soc. Am., WI. pp 173-194.

Guggenberger, G., and W. Zech. 1993. Dissolved organic carbon controls in acid forest soils of the Fichtelgebirge (Germany) as revealed by distribution patterns and structural composition analyses. Geoderma 59:109-129.

Hagedorn, F., K. Kaiser, H. Feyen, and P. Schleppi. 2000. Effects of Redox Conditions and Flow Processes on the Mobility of Dissolved Organic Carbon and Nitrogen in a Forest Soil. H. Environ, Qual. 29:288-297.

Hontoria, C., Rodriquez-Murillo, J.C., and A. Saa. 1999. Relationships Between Soil Organic Carbon and Site Characteristics in Peninsular Spain. Soil Sci. Soc. Am. J. 63:614-621.

Howard, P.J.A. and D.M. Joward. 1990. Use of organic carbon and loss-on-ignition to estimate soil organic matter in different soil types and horizons. Biol. Fert. Soils. 9:306-310.

Howeler, R.H. and D.R. Bouldin. 1971. The diffusion and consumption of oxygen in submerged soils. Soil Sci. Soc. Am. Proc. 35:202-208.

James, D.W. and A.I. Dow. 1972. Source and degree of soil variation in the field: The problem of sampling for soil tests and estimating soil fertility status. Washington State Univ. Agric. Exp. Stn. Bull. 749.

Jones and Stokes. 1995. Draft Environmental Impact Report and Environmental Impact Statement – Delta Wetlands Project. Appendix C. Figure C3-23. 1995.

Jung, M. and L. Weisser. 1999. A trial experiment on studying short-term water quality changes in flooded peat soil environments. Report for California Urban Water Agencies and Municipal Water Quality Investigations Program of the Department of Water Resources. Marvin Jung & Associates, Inc., Sacramento, CA. July 1999.

Kaiser, K. and W. Zech. 1998. Soil dissolved organic matter sorption as influenced by organic and sesquioxide coatings and sorbed sulfate. Soil Sci. Am. J. 62:129-132.

Kaiser, K. and W. Zech. 1999. Release of Natural Organic Matter Sorbed to Oxides and a Subsoil. Soil Sci. Soc. Am. J. 63:1157-1166.

Keogh, J. L. and R. Maples. 1967. A statistical study of soil sampling of Arkansas alluvial soils. Arkansas Agric. Exp. Sn. Rep. Series 157.

Larsson, M.H. and N.J. Jarvis. 2000. A Dual-Porosity Model to Quantify Macropore Flow Effects on Nitrate Leaching. JOUR. ENVIRON. QUAL. 28:1298-1307.

Mahieu, N., Powlson, D.S., and E.W. Randall. 1999. Statistical Analysis of Published Carbon-13 CPMAS NMR Spectra of Soil Organic Matter. Soil Sci. Soc. Am. J. 63:307-319.

McDowell, W.T. and T. Wood. 1984. Podzolization: Soil processes control dissolved organic carbon concentrations in stream water. Soil Sci. 137:23-32.

McLatchey, G.P. and K.R. Reddy. 1998. Regulation of organic matter decomposition and nutrient release in a wetland soil. Jour. Environ. Qual. 27:1268-1274.

McLaughlin, J.W., J.C. Lewin, D.D. Reed, C.C. Trettin, M.F. Jurgensen, and M.R. Gale. 1994. Soil factors related to dissolved organic carbon concentrations in a black spruce swamp. Soil Sci. 158:454-464.

Megonigal, J.P., S.P. Faulkner, and W.H. Patrick. 1996. The microbial activity season in southeastern hydric soils. Soc. Sci. Am. J. 60:1263-1266.

Mitsch, W.J. and J. G. Gosselink. 1993. Wetlands – Second edition. Van Nostrand Reinhold, NY.

Moore, P.A. and K.R. Reddy. 1994. Role of Eh and pH on phosphorus geochemistry in sediments of Lake Okeechobee, Florida. J. Environ. Qual. 23:955-964.

Moore, P.A., K.R. Reddy, and M.M. Fischer. 1998. Phosphorus flux between sediment and overlying water in Lake Okeechobee, Florida: spatial and temporal variations. Journ. Environ. Qual. 27:1428-1439.

Moore, P.A., K.R. Reddy, and D. A. Graetz.1992. Nutrient transformations in sediments as influenced by oxygen supply. J. Environ. Qual. 21:387-393.

Nelson, D.W. and L.E. Sommers. 1986. Total Carbon, Organic Carbon, and Organic Matter. In: Chapter 34 of Soil Science Society of America. 1996. Methods of Soils Analysis Part 3 Chemical Methods, SSAJ Book series no. 5, Madison, WI.

Nemati, M.R., Caron, J. and J. Gallichand. 2000. Stability of Structural Form during Infiltration: Laboratory Measurements on the Effect of Deinking Sludge. Soil Sci. Soc. Am. J. 64:543-552.

Ogden, C.B., van Es, H.M., Wagenet, R.J., and T.S. Steenhuis. 2000. Spatial-Temporal Variability of Preferential Flow in a Clay Soil under No-till and Plow-till. Jour. Environ Qual. 28:1264-1273.

Olila, O.G., K.R. Reddy, and D.L. Stiles. 1997. Influence of draining on soil phosphorus forms and distribution in a constructed wetland, Ecological Engineering 9:157-169.

Patrick, W.H., Jr., and D.S. Mikkelsen. 1971. Plant nutrient behavior in flooded soil. In: Fertilizer Technology and Use, 2nd edition, Soil Sci. Soc. Am., Madison, WI pp 187-215.

Patrick, W.H., Jr., and R.D. DeLaune. 1972. Characterization of the oxidized and reduced zones in flooded soil. Soil. Sci. Soc. Am., 36, (4) 573-576.

Patrick, W.H., Jr. and K.R. Reddy. 1976. Nitrification-denitrification reactions in flooded soils and water bottoms: Dependence on oxygen supply and ammonium diffusion. J. Environ. Qual. 5:469-472.

Patrick, W.H., Jr. and R.D. DeLaune. 1977. Chemical and biological redox system affecting nutrient availability in the coastal wetland. Geoscience and Man. 18:131-137.

Patrick, W.H, Jr. 1990. Microbial reactions of nitrogen and phosphorus in wetlands. The Utrecht Plant News Report No. 11, (10):52-63.

Perret, J., Prasher, S.O., Kantzxas, A. and C. Langford. 1999. Three-Dimensionsal Quantification of Macropore Networks in Undisturbed Soil Cores. Soil Sci. Soc. Am. J. 63:1530-1543.

Peret, J., Prasher S. O., Kantzas, A. and C. Langford. 2000. A Two-Domain Approach Using CAT Scanning to Model Solute Transport in Soil. Jour. Environ. Qual 29:9995-1010.

Perret, J., Parasher, S.O., Kantzas, A., Hamilton, K. and C. Langford. 2000. Preferential Solute Flow in Intact Soil Columns Measured by SPECT Scanning. Soil Sci. Soc. Am. J. 64:469-477.

Petersen, R.G. and L.D. Calvin. 1986. Sampling. In: Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods – Agronomy Monograph no. 9 (2nd Edition), Soil Science Society of America, WI.

Reed, J. F. and J. A. Rigney. 1947. Soil sampling from fields of uniform and nonuniform appearance and soil types. Agron, J. 39:26-40.

Reddy, K.R. 1982. Mineralization of nitrogen in organic soils. Soil Sci. Am. J. 46:561-566.

Reddy, K.R. 1983. Soluble phosphorus release from organic soils. Agriculture, Ecosystems and Environment, 9, 373-382.

Reddy, K.R. 1987. The effect of flooding on physical, chemical, and microbiological properties of histosols. In: Agricultural Flooding of Organic Soils. G.H. Snyder (ed.) Bulletin 870 (technical). Institute of Food and Agricultural Sciences. Univ. of Florida.

Reddy, K.R., T.C. Feitel, and W.H. Patrick, Jr. 1986. Effect of soil redox conditions on microbial oxidation of organic matter. In: Chen, Y. and Avnimelech (eds.): The role of organic matter in modern agriculture: 117-156, Martinus Nijoff Publishers, Boston.

Reddy, K.R., M.M. Fisher, and D. Ivanoff. 1996. Resuspension and diffusive flux of nitrogen and phosphorus in a hypereutrophic lake. Jour. Environ. Qual. 25:363-371.

Reddy, K.R., R. Khaleel, and M.R. Overcash. 1980. Carbon transformation in the land areas receiving organic wastes in relation to nonpoint source pollution: A conceptual model. J. Environ. Qual. 9:434-442.

Reddy, K.R., W.H. Patrick, Jr., and C.W. Lindau. 1986. Redox processes and nitrogen transformations in flooded soils. In: Transactions – 13th Congress of the International Society of Soil Science, Hamburg, Germany, Aug 13-20, 1986. Vol. 6. pp 729-738.

Ren, T., Kluitenberg, G.J., and R. Horton. 2000. Determining Soil Water Flux and Pore Water Velocity by a Heat Pulse Technology Soil Sci. Soc. Am. J. 64:552-560.

Rhoton, F.E., 2000. Influence of Time on Soil Response to No-till Practices. Soil Sci. Soc. Am. J. 64:700-709.

Rochette, P. and D.A. Angers. 1999. Soil Surface Carbon Dioxide Fluxes Induced by Spring, Summer, and Fall Moldboard Plowing in a Sandy Loam. Soil Sci. Soc. Am. J. 63:621-628.

Rochette, P., Angers, D.A., and L.B. Flanagan. 1999. Maize Residue Decomposition Measurement Using Soil Surface Carbon Dioxide Fluxes and Natural Abundance of Carbon-13. Soil Sci. Soc. Am. J. 63:1385-1396.

Sabbe, W. E. and D. B. Marx. 1987. Soil Sampling: Spatial and Temporal Variability. In: Soil Testing: Sampling, Correlation, Calibration, and Interpretation. SSSA Special Publication no. 21. Soil Science Society of America, WI.

Schomberg, H.H. and O.R. Jones. 1999. Carbon and Nitrogen Conservation in Dryland Tillage and Cropping Systems. Soil Sci. Soc. Am. J. 63:1359-1366.

Shum, K.T. and B. Sundby. 1996. Organic matter processing in continental shelf sediments – the subtidal pump revisited. Marine Chemistry 53(81-87).

Si, B.C. and R.G. Kachanoski. 2000. Estimating Soil Hydraulic Properties During Constant Flux Infiltration: Inverse Procedures. Soil Sci. Soc. Am. J. 64:439-449. Soil Science Society of America. 1979. Glossary of soil science terms. Rev. ed. SSSA, Madison, WI.

Soil Science Society of America. 1986. Methods of Soils Analysis Part 1 Physical and Mineralogical Methods, Second Edition, SSAJ Book series no. 5, Madison, WI.

Soil Science Society of America. 1994. Methods of Soils Analysis Part 2 Microbiological and Biochemical Properties, SSAJ Book series no. 5, Madison, WI.

Soil Science Society of America. 1996. Methods of Soils Analysis Part 3 Chemical Methods, SSAJ Book series no. 5, Madison, WI.

Steiner, J.L., Schomberg, H.H., Unger, P.W., and J. Cresap. 1999. Crop Residue Decomposition in No-Tillage Small-Grain Fields. Soil Sci. Soc. Am. J. 63:1817-1824.

Studdert, G.A. and H.E. Echeverria. 2000. Crop Rotation and Nitrogen Fertilization to Manage Soil Organic Carbon Dynamics. Soil Sci. Soc. Am. J. 64:1496-1503.

Thoma, G.J., Koulermos, A.C., Valsaraj, K.T., Reible, D.D., and L.J. Thibodeaux. 1991. The effects of pore-water colloids on the transport of hudrophobic organic compunds from bed sediments. In: Organic Substances in Sediments and in Water. Volume 1. R.A. Baker, ed. Lewis Publishers, Chelsea, Michigan.

Tusneem, M.E. and W.H. Patrick, Jr. 1971. Nitrogen transformations in waterlogged soil. Bulletin no. 657. Louisiana State Univ. Dept. of Agronomy. 75p.

U.S. Department of Agriculture. 1941. Soil Survey – The Sacramento-San Joaquin Delta Area, California. Bureau of Plant Industry, Superintendent of Documents, Washington, D.C.

U. S. Geological Survey. 1999. South Florida Wetland Ecosystem: Biogeochemical Processes in Peat. http://energy.er.usgs.gov/products/factsheets/sfl_wetlands/fsheet.htm July 7, 1999 update.

Vaithiyanathan, P. and C.J. Reichardson. 1988. Biogeochemical characteristics of the Everglades sloughs. Journ. Environ. Qual. 27:1439-1450.

Vollenweider, R.A. and J.J. Kerekes. 1980. Background and summary results of the OECD cooperative program on eutrophication. In: Restoration of Lakes and Inland Waters: An International Symposium of Inland Waters and Lake Restoration. U.S. Environmental Protection Agency. EPA 440/5-81-010.

Ward, A.D. and W.J. Elliott. 1995. Environmental Hydrology. CRC Lewis Press.

Wander, M.M. and G.A. Bollero. 1999. Soil Quality Assessment of Tillage Impacts in Illinois. Soil Sci. Soc. Am. J. 63:961-971.

Zak, D.R., Holmes, W.E., MacDonald, N.W., and K.S. Pregitzer. 1999. Soil Temperature, Matric Potential, and the Kinetics of Microbial Respiration and Nitrogen Mineralization. Soil Sci. Soc. Am. J. 63:575-584.

Appendices

.

SPECIAL MULTIPURPOSE APPLIED RESEARCH TECHNOLOGY STATION (SMARTS)

EXPERIMENT 2 - January 21, 1999 through January 20, 2000

Surface and monitoring well (piezometer) water data

Sampling wells (#1, 2, 3, 4) placed in tanks 5 & 8 (4 ft. peat soil, 7 ft. water)

#1 at 1' below peat soil surface

#3 at 3' below peat soil surface

#2 at 2' below peat soil surface

#4 at 4' below peat soil surface

ORP and pH measurements in enclosed chamber. Water pumped to chamber.

Measurements taken when EC was steady.

Negative Mv (millivolts) indicate anaerobic (reducing) conditions

Date: February 21, 1999

	EC	remp. pn			remp.	p⊓
TANK 8			TANK 5			
Surface Water	140	8.0	Surface Water	187	8.3	
#1	755	6.8 5.53 @ -139Mv	#1	260		6.06 @ -55Mv
#2	1030	5.38 @ -140Mv	#2	379	7.4	5.73 @ -74Mv
#3	925	5.45 @ -143Mv	#3	335	7.6	5.77 @ -76Mv
#4	955	6.8 5.74 @ -132Mv	#4	525	7.1	5.84 @ -197Mv

Date: March 17, 1999

	EC	Temp.	рН		EC	Temp.	· pH
TANK 8				TANK 5			
Surface Water	150	14.6		Surface Water	186	15.4	
#1	500	15.5 5.9	93 @ -153Mv	#1	515	16.8	5.23 @ -138Mv
#2	1060	16.1 5.8	35 @ -172Mv	#2	573	16.8	5.39 @ -148Mv
#3	1100	15.9 5.8	35 @ -176Mv	#3	555	17.2	5.43 @ -141Mv
#4	970	17.2 6.0	02 @ -173Mv	#4	604	17	5.91 @ -168Mv

Date: April 13, 1999

	EC	Temp.	рН		EC	Temp.	pН
TANK 8				TANK 5			•
Surface Water	167	16.5		Surface Water	199	16.3	
#1	697	17.1 6.2	1 @ -155Mv	#1	350	17.2 5	5.96 @ -125Mv
#2	1100	16.9 6.04	4 @ -160Mv	#2	325	17.9 5	5.78 @ -109Mv
#3	1065	17.3 6.04	4 @ -160Mv	#3	507	18 5	5.75 @ -122Mv
#4	967	17.4 6.2	@ -179Mv	#4	373	16.8	6.13 @ -185Mv

Date: May 12, 1999

	EC	Temp.	рН		EC	Temp.	pН
TANK 8				TANK 5			
Surface Water	158	23.1		Surface Water	227	22.0	
#1	759	22.3 6.1	@ -156Mv	#1	343	22.8 6	i.10 @ -48Mv
#2	918	22.1 6.0	9 @ -156Mv	#2	437	23.4 5	.85 @ -100Mv
#3	1014	21.3 6.0	7 @ -160Mv	#3	545	23.3 5	.80 @ -115Mv
#4	983	22.4 6.2	5 @ -164Mv	#4	556	23.0 6	.24 @ -174Mv

SPECIAL MULTIPURPOSE APPLIED RESEARCH TECHNOLOGY STATION (SMARTS)

SAMPLING RESULTS FOR EXPERIMENT 2

Study of the Effects of Water Flow, Water Depth, and Peat Soil Depth on DOC Levels in Surface Water from Flooded Delta Island Soils

Section 2		CTADT	UD		CAMDIL	- DATE:	Docom	ber 29, 19	109
	П	SIANI	-UF		SAMPLI	DAIL.	Decem	Der 25, 13)90
	-	-	PEAT S	OIL RES	ULTS		ļ <u></u> -		
	+	1	1. 27 (1 (JOIL REG					
Analyses	Tank 1	Tank 2	Tank 3	Tank 4	Tank 5	Tank 6	Tank 7	Tank 8	
Soil Organic Matter (mg/Kg)	70000	46000	39000	48000	41000	39000	49000	40000	
Walkely-Black Method									
	<u> </u>	ļ	ļ	ļ			ļ		
% Organic Matter (Gravimetric)	18	13	13	14	12	22	14	9.8	
% Ash Content	56	62	63	63	14	19	21	28	
% Asii Content	1 30	02	03	03	14	19	21	20	
% Moisture	26	24	24	23	. 74	59	65	62	
	1								
Nitrate (mg/Kg)	16	16	12	12	1.3	1.3	1.3	2.6	
Total Nitrogen (mg/Kg)	3900	3400	3300	3000	1800	1500	1800	1700	
Total Kieldels Nitre and (mar/Ka)	2000	2400	2200	2000	4000	4500	4000	4700	
Total Kjeldahl Nitrogen (mg/Kg)	3900	3400	3300	3000	1800	1500	1800	1700	
Total Phosphorus (mg/Kg)	839	751	613	700	148	211	500	186	
Total i noophordo (mg/rtg)	300		3.0	700	,		- 555	100	
Bromide (mg/Kg)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Sulfate (mg/Kg)	440	290	390	380	68	150	120	230	
	45000	47000	47065	4.4055	0000	1000	7055		
Total Iron (mg/Kg)	15000	17000	17000	14000	2900	4000	7200	5700	·
						•			
									L .

NOTE: BSK Laboratories report units as SOM (soil organic matter) for the Walkley-Black method.

This is INCORRECT reporting unit. Walkley-Black method states "soil organic carbon" should be used.

BSK lab manager stated BSK uses both terms interchangeably. (personal communication)

PECIAL MULTIPURPO EXPERIMENT 2 - January						STATIO	N (SMAF	RTS)				
URFACE WATER EVENT 1												
				Sample	date: .	January	21, 1999)				
PARAMETER	TANK	TANK 2	TANK 3	TANK 4	TANK 5	TANK 6	TANK 7	TANK 8	TANK 9	Dup. TANK 6		QA/QC RPD
DC (mg/L)	12.3	18.5	9.7	14.4	2.2	2.9	3.8	5.4	1.9	3.8		26.87
DOC (mg/L)	10.7	16.8	8.6	11.3	1.9	1.8	2.2	2.8	1.12	1.9	1.3	5.41
oVA (mg/L)	0.463	0.671	0.323	0.439	0.058	0.052	0.083	0.102	0.015	0.049	0.022	5.94
pecific Absorbance Calc.	4.33	3.99	3.76	3.88	3.05	2.89	3.77	3.64	1.34	2.58	1.69	11.34
Alkalinity (mg/L)	38.1	49.5	49	53.5	129	42.5	40.2	45.1	46.9	41.3	31	2.86
mmonia (mg/L)	0.18	0.14	0.09	0.08	0.24	0.18	0.24	0.14	0.05	0.18		0.00
Promide (mg/L)	0.02	0.08	0.01	0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.00
Color (Color Units)	70	250	125	350	40	60	100	140	5	60		0.00
otal Iron (mg/L)											0.489	
Nitrate + Nitrite (mg/L)	1.1	1.9	0.72	0.75	0.24	0.25	0.28	0.28	0.24	0.26		3.92
otal Kjeldahl Nitrogen (mg/L)	1.2	1.9	1.4	1.9	0.5	0.8	0.7	0.8	0.3	0.7		13.33
s. Orthophosphate (mg/L)	0.05	0.05	0.06	0.05	0.02	0.03	0.02	0.05	0.09	0.04		28.57
Total Phosphorus (mg/L)	0.13	0.24	0.35	0.34	0.08	0.12	0.16	0.43	0.18	0.12		0.00
otal Sulfate (mg/L)											22	
Bromodichloromethane (ug/L)	58	110	44	56	16	14	18	19	11	14		0.00
romoform (ug/L)	<30	<50	<20		<10	<10	<10	<10		<10		0.00
Chloroform (ug/L)	780 <30	1100 <50	620 <20	760 <30	130 <10	140 <10		200 <10	73 <10	139 10		0.72
Dibromochloromethane (ug/L) TOTAL THMFP (ug/L)	838	1210	664	816	146	154	178	219	84	163		5.68
Chiorophyll-a												
neophytin-a												
Field Measurements:												
Temperature	12.0	12.0	11.8	11.7	12.1	11.9	11.9	11.9	11.6	11.9	11.9	
EC	312	483	248	621	177	170	184	194	170	170	116	
bo	9.3	5.9	7.4	6.9	9.4	9.6	8.8	9.0	11.0	9.6		
_pH	6.6	6.7	6.9	7.1	7.0	7.1	7.0	7.0	7.2	7.1	8.3	
Turbidity	16.8	127.0	135.0	180.0	19.3	36.9	59.6	65.6	2.1	36.9		
NOTES:	Water Si									upply line	e and the	line
	was not a											
	Fresh wa	ter flow v	vas start	ea to eve	en-numb	ered tan	ks on Ja	nuary 21.	·			

SPECIAL MULTIPURPO	SE APP	JED RES	SEARCH	TECHN	OLOGY :	NOITATE	I (SMAR	rs)				18.
EXPERIMENT 2 - Janu	ary 21, 1	999 throu	igh Janua	ary 20, 20	000							
										ļ		
SURFACE WATER					<u> </u>					ļ	ļ	
EVENT 2	11		į									,
	1			Sampl	e date:	February	<i>y</i> 3, 1999		.,			
										Dup.		QA/Qd
PARAMETER	TANK	1 TANK 2	TANK 3	TANK 4	TANK 5	TANK 6	TANK 7	TANK 8	TANK 9	TANK 8	Supply	RPD'
					ļ					ļ		
TOC (mg/L)	16.0	9.7	12.0	5.1	2.5	1.5	3.9	4.1	1.5	3.9		5.00
	H		40.7				1.0	1.0	1.0			
DOC (mg/L)	16.0	9.6	10.7	4.7	2.3	1.4	4.8	1.8	1.3	1.7	1.1	5.71
10/4/ #>	0.697	0.277	0.455	0.474	0.007	0.000	0.128	0.055	0.046	0.045	0.040	00.00
UVA (mg/L)	0.687	0.377	0.455	0.171	0.087	0.029	0.128	0.055	0.016	0.045	0.018	20.00
Specific Absorbance Calc.	4.29	3.93	4.25	3.64	3.78	2.07	2.67	3.06	1.23	2.65	1.64	14.33
Specific Absorbance Calc.	4.23	3.93	4.23	3.04	3.70	2.01	2.07	3.00	1.23	2.05	1.04	14.5
Alkalinity (mg/L)	-	<u> </u>			 	ļ				 	42	
r uncurrity (mg/2)	1						 				'	
Ammonia (mg/L)	0.13	0.05	0.13	0.04	0.27	0.03	0.21	0.04	0.09	0.04		0.00
Bromide (mg/L)											<0.01	
Color (Color Units)	140	80	200	60	50	10	70	40	<5	40		0.00
Total Iron (mg/L)											0.352	
Nitrate + Nitrite (mg/L)	·											
	 											
Total Kjeldahl Nitrogen (mg/L)	ļ											
Dis. Orthophosphate (mg/L)												
Total Phosphorus (mg/L)				·					i			
Discolused Culfete (mg/l)											20	
Dissolved Sulfate (mg/L)											20	
Bromodichloromethane (ug/L)	90	55	59	28	19	11	24	12	11	12		0.00
Bromoform (ug/L)	<50		<30		<10	<10		<10	<10	<10		0.0
Chloroform (ug/L)	970	610	720	320	160	89	210	110	65	100		9.5
Dibromochloromethane (ug/L)	<50		<30			<10		<10	<10	<10		0
TOTAL THMFP (ug/L)	1060	685	779	376	179	100	234	122	76	112		8.5
Chlorophyll-a												
Pheophytin-a												
Field Measurements:												
Temperature	8.8	8.4	7.8	7.7	8.7	8.0	7.9	7.9	7.4	7.9	9	
EC	244	276	276	187	182	148	188	152	173	152	154	
DO	9.0	8.9	5.7	8.0	8.5	10.0	8.0	9.9	10.4	9.9	10.2	
pH	6.8	7.0	7.1	7.2	7.3	7.3	7.3	7.2	7.3	7.2	7.11	
Turbidity	21.9	24.7	99.4	42.1	16.4	4.4	39.2	8.5	1.4	8.5	2.5	

PECIAL MULTIPURPO						TATION	(SMAR	ſS)				
EXPERIMENT 2 - Janu	ary 21, 1	999 throu	gn Janua	iry 20, 20	JUU							
URFACE WATER												
EVENT 3												
			Sample of	late: F	ebruary '	18, 1999			.1			
										Dup.		QA/QC
PARAMETER	TANK	1 TANK 2	TANK 3	TANK	TANK 5	TANK 6	TANK 7	TANK 8	TANK S	TANK 6	Supply	RPD
OC (mg/L)	20.3	3 4.8	14.6	3.7	3.3	3 1.4	4.1	1.4	1.2	1.2		15.38
DOC (mg/L)	19.7	4.5	13.4	3.5	2.5	1.2	3.6	1.4	1.3	1.2	1	0.00
UVA (mg/L)	0.9	0.192	0.611	0.132	0.097	0.028	0.156	0.039	0.017	0.024	0.016	15.38
pecific Absorbance Calc.	4.57	4.27	4.56	3.77	3.88	2.33	4.33	2.79	1.31	2.00	1.60	15.38
Alkalinity (mg/L)											39	
mmonia (mg/L)	0.03	0.02	0.03	0.03	0.31	0.02	0.07	0.02	0.12	0.02		0.00
romide (mg/L)											<0.01	
Color (Color Units)	160	60	240	40	40	5	40	15	<5	10		66.67
otal Iron (mg/L)											0.506	
Nitrate + Nitrite (mg/L)												
otal Kjeldahl Nitrogen (mg/L)												
is. Orthophosphate (mg/L)				·								
Total Phosphorus (mg/L)												
issolved Sulfate (mg/L)						·					18	
Bromodichloromethane (ug/L)	120	29	78	26	19	11	24	13	10			0.00
romoform (ug/L)				1	<10	<10	<10	<10	<10	<10		0.00
Chloroform (ug/L)	1500	390	1100	290	210	92	310	110	71			2.15
Dibromochloromethane (ug/L)	<50 1620	<10 ·	<30 1178	<10 316	<10 229	<10 103	<10 334	<10 123	<10 81	<10 105		0.00 1.92
TOTAL THMFP (ug/L)	1020	413	11/6	310	229	103	334	123	01	105		1.92
Chlorophyll-a											-	
heophytin-a												
Field Measurements:												
Temperature	10.9	10.7	10.6	10.6	10.5	10.3	10.3	10.4	10	10.3	10	
EC	386	166	302	172	186	139	191	142	172	139	141	
DO	8.99	9.24	5.9	8.2	8.29	10.17	7.29	9.8	10.65		10.2	
рН	6.47	6.56	6.4	6.5	6.67	6.66	6.68	6.52	6.75		6.72	
Turbidity	25.7	32.2	81.5	14.3	36.5	3.46	31.2	4.2	1.12	3.46		

SPECIAL MULTIPURPO EXPERIMENT 2 - Janua						TATION	(SMART	S).		18.		
		/00 (11100)	J., CO., CO	.,								
SURFACE WATER			ļ					ļ		<u> </u>	ļ	-
EVENT 4										1		
The second of th				S	ample d	ate: Ma	rch 4,199	9	.l	I		
										Dup.		QA/QC
PARAMETER	TANK 1	1 TANK 2	TANK 3	TANK 4	TANK 5	TANK 6	TANK 7	TANK 8	TANK 9	TANK 4	Supply	RPD
			ļ							ļ	ļ	
TOC (mg/L)	24.3	5.0	18.3	4.6	5.4	1.6	5.0	1.7	1.2	4.7	ļ	4.26
D00 (#)	1 22 (1 46	16.0	4.0	20	10	- 20	1.6	1 4	4.4	0.0	0.00
DOC (mg/L)	23.0	4.6	16.8	4.2	2.9	1.0	3.8	1.6	1.1	4.4	0.9	9.09
UVA (mg/L)	1.08	0.193	0.833	0.171	0.139	0.026	0.21	0.047	0.017	0.171	0.017	0.00
OVA (Mg/L)	1.00	0.133	0.000	0.171	0.139	0.020	0.21	0.047	0.017	0.171	0.017	0.00
Specific Absorbance Calc.	4.70	4.20	4.96	4.07	4.79	2.60	5.53	2.94	1.55	3.89	1.89	9.52
Alkalinity (mg/L)									-		41	
												-
Ammonia (mg/L)	0.02	0.03	0.03	0.04	0.01	0.02	0.02	0.03	0.12	0.04		0.0
Bromide (mg/L)	-				ļ				ļ		<0.01	
		70	0.40		100	1	100	4.5				10.0
Color (Color Units)	200	70	240	60	160	15	120	15	<5	50		40.0
Total Iron (mg/L)	 				 		<u> </u>				0.358	
Total non (mgrz)					 		-		 		0.000	
Nitrate + Nitrite (mg/L)					<u> </u>							
Total Kjeldahl Nitrogen (mg/L)												
	 											
Dis. Orthophosphate (mg/L)	 	 							ļ <u>.</u>			
	ļ				ļ	ļ <u> </u>	<u> </u>					
Total Phosphorus (mg/L)		<u> </u>										
Dissolved Sulfate (mg/L)							ļ				22	
Dissolved Sulfate (Hig/L)						ļ						
Bromodichloromethane (ug/L)	130	28	100	30	22	10	25	14	10	30		0.00
Bromoform (ug/L)	<50			<10		<10	<10	<10	<10	<10		0.0
Chloroform (ug/L)	1400	340	1100	280	1	74				290		6.9
Dibromochloromethane (ug/L)				<10		<10	<10	<10	<10	<10		0.00
TOTAL THMFP (ug/L)	1530	368	1200	310	262	84	335	124	70	320		6.2
Chlorophyll-a												
Pheophytin-a												
First Management					 						· · · · · · · · · · · · · · · · · · ·	
Field Measurements:	13.4	12.5	12.7	10.4	12.0	40.0	10.6	40.4	12.2	40.4	12.0	
Temperature EC	411	166	348	12.4 175	13.2 191	12.2 142	12.6 193	12.4 145		12.4 175		
DO	7.67	7.18	5.6	6.72	4.98	9.27	6.3	8.96		6.72	9.5	
pH	6.34	6.41	6.22	6.13	6.30	6.73		6.66	7.05			

SPECIAL MULTIPURPO	SE APPL	IED RES	EARCH	TECHN	OLOGYS	AOITATE	I (SMAR	TS)	į.			
EXPERIMENT 2 - Janu	ary 21, 19	999 throu	gh Janua	ary 20, 20	000							
	I			İ								
SURFACE WATER												
EVENT 5									1			1
	-		1		ample de	to. Mo.	b 47 40		Ì	.i	i	ļ
]	T 3	ample da	ite. Mai	17,18	199 	T	Dup.	Motor	QA/QC
PARAMETER	TANK	1 TANK S	TANK	TANK	TANK	TANK	STANK	TANKS	TANK 9			RPD
FAINILILI	IAM	ITANK	IAIVIC	I AINIC .	IANK	IANK	ININ	IANK	I AINK 9	I AINI 2	Supply	KPU
OC (mg/L)	28.4	6.4	29.6	4.8	3 13.0	1.6	7.0	1.8	1.2	5.4	ļ	16.95
OG (mg/L)	20.	. 0.4	20.0	7	10.0	+	7.0	1.0	1.2	0.4	 	10.55
DOC (mg/L)	28.0	5.4	27.2	4.4	3.5	1.0	5.0	1.4	1.1	5.6	0.8	3.64
, co (wg.c)				 		1		 	ļ	1		0.01
JUVA (mg/L)	1.31	0.255	1.35	0.174	0.167	0.027	0.257	0.048	0.018	0.253	0.014	0.79
											1	
specific Absorbance Calc.	4.68	4.72	4.96	3.95	4.77	2.70	5.14	3.43	1.64	4.52	1.75	4.42
4		1						<u> </u>				
Alkalinity (mg/L)	38	47	88	47	24	42	33	42	51	46	45	2.15
mmonia (mg/L)	0.02	0.02	0.03	0.03	<0.01	0.02	<0.01	0.03	0.15	0.02		0.00
Bromide (mg/L)	0.14	0.03	0.17	0.09	0.03	<0.01	0.03	<0.01	<0.01	0.03	<0.01	0.00
Color (Color Units)	200	50	250	50	250	5	125	5	<5	70		33.33
otal Iron (mg/L)											0.83	
T	<u> </u>						ļ					
Nitrate + Nitrite (mg/L)												
												- 12 12
Total Kjeldahl Nitrogen (mg/L)	1.9	0.6	1.9	1.4	1.4	<0.1	0.7	0.1	0.2	0.5		18.18
	 						ļ					
Dis. Orthophosphate (mg/L)	 						 					
Total Dhaanharin (mg/l)	0.15	0.18	0.21	0.26	0.35	0.14	0.14	0.15	0.11	0.17		5.71
Total Phosphorus (mg/L)	0.13	0.16	0.21	0.20	0.55	0.14	0.14	0.15	0.11	0.17		5.71
Dissolved Sulfate (mg/L)											21	
Dissolved Sullate (Hg/L)									,		21	
Bromodichloromethane (ug/L)	170	36	80	32	22	10	30	14	10	34		5.71
Bromoform (ug/L)	<100			<10	<10	<10	<10	<10	<10	<10		0.00
Chloroform (ug/L)	1600	340	1700	280	260	67	380	100	56	360		5.71
Dibromochloromethane (ug/L)	<100		<100		<10	<10	<10	<10	<10	<10		0.00
TOTAL THMFP (ug/L)	1770	376	1780	323	282	77	410	114	66	394		4.68
T												
Chlorophyll-a												
Pheophytin-a												
Field Measurements:												
Temperature	13.2	12.8	12.8	12.5	13.2	12.9	13.0	12.8	12.6	12.8	13.2	
EC	432	167	424	178	191	143	195	146	170	167	152	
DO	8.61	8.77	6.2	8.37	5.3	10.5	9.01	9.1	10.05	8.77	10.7	
pH	6.2	6.5	6.45	6.46	6.29	6.57	6.65	6.59	7.11	6.50	6.42	
Turbidity	38.9	20.9	74.8	21.1	346	3.32	47.8	5.13	0.85	20.9		

SPECIAL MULTIPURPO			A. I.	es e		STATION	(SMART	S)				
EXPERIMENT 2 - Janua	ary 21, 19	999 throu	gh Janua	ary 20, 20	000				1			
SURFACE WATER						<u> </u>	ļ			<u> </u>		
				-							<u> </u>	<u></u>
EVENT 6	Щ			1	<u> </u>	<u></u>	<u> </u>		<u>.</u>		<u> </u>	
	<u> </u>			S	ample d	ate: Mar	ch 31,19	99				
	H									Dup.	Water	
PARAMETER	IANK	1 TANK 2	IANK	I ANK 4	I ANK 5	I ANK 6	IANK 7	IANK 8	IANK 9	I ANK 8	Supply	RPD
TOC (mg/L)	33.4	6.0	40.5	5.1	7.9	1.5	7.7	1.9	1.1	1.7	1.0	11.1
TOC (Hg/L)	33.2	0.0	40.5	3.1	1.8	1.5	1.7	1.5	1.1	1.7	1.0	11.1
DOC (mg/L)	33.4	5.6	39.4	4.8	4.0	1.3	6.3	1.7	1.1	1.7	1.0	0.00
									1			0.00
UVA (mg/L)	1.56	0.249	1.94	0.201	0.198	0.029	0.359	0.056	0.02	0.058	0.016	3.5
Specific Absorbance Calc.	4.67	4.45	4.92	4.19	4.95	2.23	5.70	3.29	1.82	3.41	1.60	3.5
Alkalinity (mg/L)	-	ļ									47	
	H	0.00	0.00	0.00		0.00	0.01	0.05		-		
Ammonia (mg/L)	0.07	0.03	0.06	0.06	<0.01	0.02	<0.01	0.05	0.15	0.04		22.2
Bromide (mg/L)	H				<u> </u>				ļ		<0.01	
Bromide (mg/L)	H				-					-	~0.01	
Color (Color Units)	250	80	400	50	350	5	180	10	<5	15		40.0
Color Chiley			100		- 555		100			10		70.00
Total Iron (mg/L)											0.161	
Nitrate + Nitrite (mg/L)												
Total Kjeldahl Nitrogen (mg/L)												
Dis. Orthophosphate (mg/L)												
T-1-1-Di												
Total Phosphorus (mg/L)				·								
Dissolved Sulfate (mg/L)											25	
Dissolved Sullate (Hig/L)											20	
Bromodichloromethane (ug/L)	220	42	270	42	27	12	41	18	10	17		5.71
Bromoform (ug/L)				<10	<10			<10	<10	<10		0.0
Chloroform (ug/L)	2000	360	2600	350	350	95	500	140	58	130		7.4
Dibromochloromethane (ug/L)	93	20	98	13	10	10	21	11	<10	11		0.00
TOTAL THMFP (ug/L)	2313	422	2968	405	387	117	562	169	68	158		6.7
Chlorophyll-a		·										
Pheophytin-a												
Tield Manager												
Field Measurements:	11.7	11.1	11.7	11.3	12.1	12.1	12.1	11.9	11.9	11.9	13.6	
Temperature EC	461	186	500	198	12.1	163	204	166	129	166	170	
DO	8.22	8.15	4.35	8.16	5.58	9.07	5.0	8.39	9.47	8.39	9.29	
pH	6.96	7.15	7.08	7.34	7.10	7.33	7.18	7.38	7.62	7.38	7.15	
Turbidity	78.7	34.5	128	25.6	157		59.8	5.22	1.31	5.22	1.32	

PECIAL MULTIPURPOS	SE APPL	IED RES	EARCH	TECHNO	LOGY S	STATION	(SMART	S)				
EXPERIMENT 2 - Janua	ary 21, 19	99 throug	gh Janua	iry 20, 20	00	ī		T .	T	1		1
URFACE WATER								<u></u>			ļ	ļ
The same and the same was the same and the s	1			<u> </u>		 						†
EVENT 7		1	J	<u> </u>	<u> </u>	<u></u>		<u> </u>		<u> </u>	1	ļ
Appearance of the second secon	 	7		S	ample d	late: Apr	il 13, 199	9	T	T-5	1347	101156
DADAMETED	TANK	TANKO	TANK	TANK A	TANK	TANK	TANK	TANK	TANKO	Dup.		QA/QC
PARAMETER	IANKI	IANK 2	I ANN 3	I ANK 4	IANK	IANK	TANK 7	IANK	TANK 9	I ANK 4	Supply	RPD
OC (mg/L)	41.4	4.3	47.8	5.1	10.8	1.5	11.0	1.9	1.2	5.0		1.98
OC (IIIg/L)	11.4	7.0	47.0		10.0	1.0	11.0	1.5	1.2	0.0		1.30
⊖OC (mg/L)	39.3	4.2	45.1	4.6	4.3	1.0	6.9	1.5	1.0	4.5	0.8	2.20
·				<u> </u>					<u> </u>			
UVA (mg/L)	1.84	0.176	2.17	0.194	0.222	0.024	0.37	0.047	0.018	0.193	0.013	0.52
pecific Absorbance Calc.	4.68	4.19	4.81	4.22	5.16	2.40	5.36	3.13	1.80	4.29	1.63	1.68
Alkalinity (mg/L)												
mmonia (mg/L)	0.04	0.03	0.08	0.07	<0.01	0.03	<0.01	0.03	0.13	0.08		13.33
							ļ		ļ	ļ	10.04	
romide (mg/L)							ļ		-		<0.01	
Oales (Oales Heite)	350	60	600	7	250	5	200	E	<5	60		
Color (Color Units)	350	00	000		200	3	200	3	\	00		
otal Iron (mg/L)					<u> </u>		 				0.084	
otal from (mg/L)											0.004	
Nitrate + Nitrite (mg/L)			-			<u> </u>				<u> </u>		
indication (in graph)												
rotal Kjeldahl Nitrogen (mg/L)												
					and the second s			,				
is. Orthophosphate (mg/L)												
Total Phosphorus (mg/L)												
									<u> </u>			
issolved Sulfate (mg/L)											20.0	
	200	20	240	44	24	40	AE	24	44	44		0.00
Promodichloromethane (ug/L)	280 <100	39 <10	340 <100	41 <10	31 <10	13 <10	45 <20	21 <20	11 <10	<10	***************************************	0.00
romoform (ug/L) Chloroform (ug/L)	2400	310	2900	310	370	75	520	130	57	310		0.00
Dibromochloromethane (ug/L)	110	12	120	13		<10	<20	<20	10	13		0.00
TOTAL THMFP (ug/L)	2790	361	3360	364	411	88	565	151	78	364		0.00
1017(L 1110117 (ug/L)										901		0.00
Chlorophyll-a												
heophytin-a												
Field Measurements:												
Temperature	15.0	14.8	14.3	14.4	14.6	14.5	14.4	14.8	14.0	14.4	15.1	
EC	465	142	410	149	195.3	127	157.2	161	133	149	150.6	
DO	7.89	8.24	4.08	7.28	6.87	9.63	6.03	9.26	9.76	7.28	9.37	
pH	6.7	6.91	6.76	6.73	6.74	7.21	6.96	7.08	7.75	6.73	7.06	· · · · · · · · · · · · · · · · · · ·
Turbidity	74.3	28.9	168	33.5	172	2.11	84.8	4.78	0.61	33.5	0.9	

Sample date: April 28, 1999 Dup. Water CAVC	SPECIAL MULTIPURPO	SE APPL	IED RES	EARCH	TECHNO	LOGY S	TATION	(SMART	S) -				
SURFACE WATER EVENT 8 Sample date: April 28, 1999 PARAMETER TANK 1 TANK 2 TANK 3 TANK 4 TANK 5 TANK 6 TANK 7 TANK 8 TANK 9 TANK 4 Supply RPE TOC (mg/L) 52,9 7,4 68.2 7,6 10.8 1,6 14.6 3,1 1,5 8.8 14.6 DOC (mg/L) 51.8 6,6 6,6 1 7,5 5,4 1,2 10.3 2,8 1,0 8,7 0,8 14.8 UVA (mg/L) 2,36 0,303 3,19 0,355 0,285 0,035 0,532 0,123 0,021 0,343 0,012 3,4 Specific Absorbance Calc. 4,56 4,59 4,83 4,73 5,28 2,92 5,17 4,39 2,10 3,94 1,50 18,2 Akaininly (mg/L) 0,03 0,04 0,05 0,11 <0,01 0,02 0,03 0,07 <0,01 0,11 0,01 Somidic (mg/L) 0,03 0,04 0,05 0,11 <0,01 0,02 0,03 0,07 <0,01 0,11 0,01 Somidic (mg/L) 0,03 0,04 0,05 0,11 <0,01 0,02 0,03 0,07 <0,01 0,11 0,01 Somidic (mg/L) 0,03 0,04 0,05 0,11 <0,01 0,02 0,03 0,07 <0,01 0,11 0,01 Somidic (mg/L) 0,03 0,04 0,05 0,11 <0,01 0,02 0,03 0,07 <0,01 0,11 0,01 Somidic (mg/L) 0,03 0,04 0,05 0,11 <0,01 0,02 0,03 0,07 <0,01 0,11 0,01 Somidic (mg/L) 0,03 0,04 0,05 0,11 <0,01 0,02 0,03 0,07 <0,01 0,11 0,01 Somidic (mg/L) 0,05 0,12 0,03 0,07 <0,01 0,11 0,00 0,05 0,11 0,00 0,05 0,11 0,00 0,05 0,10 0,05 0,10 0,05 0,10 0,10	EXPERIMENT 2 - Januar	an/21 10	IQQ throug	ıh lanus	n/20-20	nn							
Sample date: April 28, 1999	EMINENT 2 - Valida		99 (11100)	jii Janua	19 20, 20	00							
Sample date: April 28, 1999 Dup. Water QA/O	SURFACE WATER										İ		
Sample date: April 28, 1999 Dup. Water QA/O	EVENT 8												
PARAMETER TANK 1 TANK 2 TANK 3 TANK 4 TANK 5 TANK 6 TANK 7 TANK 8 TANK 4 Supply RPE TOC (mg/L) 52.9 7.4 68.2 7.6 10.8 1.6 14.8 3.1 1.5 8.8 14.6 DOC (mg/L) 51.8 6.6 66.1 7.5 5.4 1.2 10.3 2.8 1.0 8.7 0.8 14.8 UVA (mg/L) 2.36 0.303 3.19 0.365 0.285 0.035 0.532 0.123 0.021 0.343 0.012 3.4 Specific Absorbance Calc. 4.56 4.59 4.83 4.73 5.28 2.92 5.17 4.39 2.10 3.94 1.50 18.2 Alkialinity (mg/L) Ammonia (mg/L) Ammonia (mg/L) Solor (Color Units) 500 125 700 125 350 10 400 40 <5 125 0.03 Sitrate + Nitrie (mg/L) Otal Rigidah Nitrogen (mg/L) Otal Rigidah Nitrogen (mg/L) Sitsolved Sulfate (mg/L) Total Rigidah Nitrogen (mg/L) Total Rigidah Nitrogen (mg/L) Sitsolved Sulfate (mg/L) TOTAL THMFP (ug/L) 3720 492 4530 564 469 100 781 243 63 643 13.0 TOTAL THMFP (ug/L) Total Measurements: Temperature 15.3 14.9 15.1 14.5 15.4 15.2 15.7 15.4 15.7 14.5 15.9 Temperature 15.3 14.9 15.1 14.5 15.4 15.2 15.7 15.4 15.7 14.5 15.9 Temperature 15.3 14.9 15.1 14.5 15.4 15.2 15.7 15.4 15.7 14.5 15.9 Temperature 15.3 14.9 15.1 14.5 15.4 15.2 15.7 15.4 15.7 14.5 15.9 Temperature 15.3 14.9 15.1 14.5 15.4 15.2 15.7 15.4 15.7 14.5 15.9 Temperature 15.3 14.9 15.1 14.5 15.4 15.2 15.7 7.99 3.0 6.66 8.1 15.7 14.5 15.4 15.7 14.5 15.9 Total Measurements: Temperature 15.3 14.9 15.1 14.5 15.4 15.2 15.7 7.99 3.0 6.66 8.1 15.7 14.5 15.4 15.7 14.5 15.9	AND THE RESERVE THE PARTY AND AND AND AND AND AND AND AND AND AND	#	<u> </u>	İ	<u> </u>	ample d	ate: Apr	⊥ il 28 199	9	L	J	i	ļ · · · · · · ·
PARAMETER TANK 1 TANK 2 TANK 3 TANK 4 TANK 5 TANK 6 TANK 7 TANK 8 TANK 8 TANK 4 Supply RPE TOC (mg/L) 52.9 7.4 68.2 7.6 10.8 1.6 14.8 3.1 1.5 8.8 14.6 DOC (mg/L) 51.8 6.6 66.1 7.5 5.4 1.2 10.3 2.8 1.0 8.7 0.8 14.6 DOC (mg/L) 2.36 0.303 3.19 0.355 0.285 0.035 0.532 0.123 0.021 0.343 0.012 3.4 Specific Absorbance Calc. 4.56 4.59 4.83 4.73 5.28 2.92 5.17 4.39 2.10 3.94 1.50 18.2 Alkalinity (mg/L) 0.03 0.04 0.05 0.11 <0.01 0.02 0.03 0.07 <0.01 0.11 0.0 Stromide (mg/L) 0.03 0.04 0.05 0.11 <0.01 0.02 0.03 0.07 <0.01 0.11 0.0 Stromide (mg/L) 0.03 0.04 0.05 0.11 <0.01 0.02 0.03 0.07 <0.01 0.11 0.0 Stromide (mg/L) 0.05 0.125 700 125 350 10 400 40 <5 125 0.0 Stromide (mg/L) 0.05 0.125 0.0 0.125 0.0 0.0 0.0 0.0 0.0 Stromotor (ug/L) 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 Stromotor (ug/L) 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 Stromotor (ug/L) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Stromotor (ug/L) 0.00 0.0		1	T	T	T				Ī	T	Dup.	Water	QA/Qd
DOC (mg/L) 51.8 6.6 66.1 7.5 5.4 1.2 10.3 2.8 1.0 8.7 0.8 14.8 DUA (mg/L) 2.36 0.303 3.19 0.355 0.285 0.035 0.532 0.123 0.021 0.343 0.012 3.4 Specific Absorbance Calc. 4.56 4.59 4.83 4.73 5.28 2.92 5.17 4.39 2.10 3.94 1.50 18.2 Alkkalinity (mg/L) 4.5 Color (Color Units) 500 125 700 125 350 10 400 40 <5 125 0.005 Otal Krate + Nikrite (mg/L) 410 60 550 70 39 13 61 23 11 74 5.5 romodic (mg/L) 410 60 550 70 39 13 61 23 11 74 5.5 romodic (mg/L) 410 80 500 420 <10 <10 <3 N/L Nikrite (mg/L) 410 80 80 470 430 87 720 220 52 510 8.1 bicomocitoromethane (ug/L) 410 22 180 24 <20 <10 <20 <10 <10 <3 N/L Nikrite (mg/L) 410 82 4530 564 469 100 781 243 63 643 13.0 hidrophylina eld Measurements: left Meas	PARAMETER	TANK 1	TANK 2	TANK 3	TANK 4	TANK 5	TANK 6	TANK 7	TANK 8	TANK 9		1	
DOC (mg/L) 51.8 6.6 66.1 7.5 5.4 1.2 10.3 2.8 1.0 8.7 0.8 14.8 DUA (mg/L) 2.36 0.303 3.19 0.355 0.285 0.035 0.532 0.123 0.021 0.343 0.012 3.4 Specific Absorbance Calc. 4.56 4.59 4.83 4.73 5.28 2.92 5.17 4.39 2.10 3.94 1.50 18.2 Alkkalinity (mg/L) 4.5 Color (Color Units) 500 125 700 125 350 10 400 40 <5 125 0.005 Otal Krate + Nikrite (mg/L) 410 60 550 70 39 13 61 23 11 74 5.5 romodic (mg/L) 410 60 550 70 39 13 61 23 11 74 5.5 romodic (mg/L) 410 80 500 420 <10 <10 <3 N/L Nikrite (mg/L) 410 80 80 470 430 87 720 220 52 510 8.1 bicomocitoromethane (ug/L) 410 22 180 24 <20 <10 <20 <10 <10 <3 N/L Nikrite (mg/L) 410 82 4530 564 469 100 781 243 63 643 13.0 hidrophylina eld Measurements: left Meas													
DVA (mg/L)	TOC (mg/L)	52.9	7.4	68.2	7.6	10.8	1.6	14.8	3.1	1.5	8.8		14.63
DVA (mg/L)		1				<u> </u>							
Specific Absorbance Calc. 4.56 4.59 4.83 4.73 5.28 2.92 5.17 4.39 2.10 3.94 1.50 18.2	DOC (mg/L)	51.8	6.6	66.1	7.5	5.4	1.2	10.3	2.8	1.0	8.7	0.8	14.81
Specific Absorbance Calc. 4.56 4.59 4.83 4.73 5.28 2.92 5.17 4.39 2.10 3.94 1.50 18.2			0.000	0.40	0.055	0.005	0.005	0.500	0.100	0.004	0.010		
Alkalinity (mg/L) Alkalinity (m	UVA (mg/L)	2.36	0.303	3.19	0.355	0.285	0.035	0.532	0.123	0.021	0.343	0.012	3.44
Alkalinity (mg/L) Alkalinity (m	0	A 56	4.50	4 92	4 72	F 20	2.02	E 17	4 20	2.10	2.04	4.50	40.09
Ammonia (mg/L) 30.03 0.04 0.05 0.11 0.01 0.02 0.03 0.07 0.01 0.11 0.02 0.03 0.07 0.01 0.11 0.03 0.07 0.01 0.01 0.02 0.03 0.07 0.01 0.01 0.02 0.03 0.07 0.01 0.01 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.0054 0	Specific Absorbance Calc.	4.50	4.59	4.03	4.73	5.20	2.92	5.17	4.39	2.10	3.94	1.50	18.2
Ammonia (mg/L) 30.03 0.04 0.05 0.11 0.01 0.02 0.03 0.07 0.01 0.11 0.02 0.03 0.07 0.01 0.11 0.03 0.07 0.01 0.01 0.02 0.03 0.07 0.01 0.01 0.02 0.03 0.07 0.01 0.01 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.0054 0	Alkalinity (ma/l.)	-					-	<u> </u>				. 45	<u> </u>
Stromide (mg/L) Stromide (Arkalinity (mg/L)	 					<u> </u>	 				- 43	
Stromide (mg/L) Stromide (Ammonia (mg/L)	0.03	0.04	0.05	0.11	<0.01	0.02	0.03	0.07	<0.01	0.11		0.0
Color (Color Units) 500 125 700 125 350 10 400 40 <5 125 0.0	, (g. <u>-</u>)	#							0.01	0.0.			- 0.0
Total Iron (mg/L) 0.054 0.	Bromide (mg/L)								-			<0.01	
Total Iron (mg/L) 0.054 0.													
itirate + Nitrite (mg/L) otal Kjeldahl Nitrogen (mg/L) is. Orthophosphate (mg/L) otal Phosphorus (mg/L) issolved Sulfate (mg/L) romodichloromethane (ug/L) romodichloromethane (ug/L) 170 romodichloromethane (ug/L) 180 180 180 180 180 180 180 18	Color (Color Units)	500	125	700	125	350	10	400	40	<5	125		0.0
itirate + Nitrite (mg/L) otal Kjeldahl Nitrogen (mg/L) is. Orthophosphate (mg/L) otal Phosphorus (mg/L) issolved Sulfate (mg/L) romodichloromethane (ug/L) romodichloromethane (ug/L) 170 romodichloromethane (ug/L) 180 180 180 180 180 180 180 18			•										
Solution Content Con	Total Iron (mg/L)											0.054	
Solution Content Con					· · · · · · · · · · · · · · · · · · ·								
otal Phosphorus (mg/L) issolved Sulfate (mg/L) romodichloromethane (ug/L) 410 60 550 70 39 13 61 23 11 74 5.5 romoform (ug/L) 410 320 410 3800 470 430 87 720 220 52 510 8.1 ibromochloromethane (ug/L) 110 22 180 24 <20 <10 <20 <10 <10 <20 520 52 510 8.1 ibromochloromethane (ug/L) TOTAL THMFP (ug/L) 3720 492 4530 564 469 100 781 243 63 643 13.0 hlorophyli-a neophytin-a eld Measurements: Femperature 15.3 14.9 15.1 14.5 15.4 15.2 15.7 15.4 15.7 14.5 15.9 EC 427.6 145 563 202.6 170.5 118.6 206.4 124.4 142.5 202.6 121.7 DO 5.97 7.03 3.83 5.14 4.74 7.89 3.04 6.66 8.11 5.14 8.4	Nitrate + Nitrite (mg/L)												
otal Phosphorus (mg/L) issolved Sulfate (mg/L) romodichloromethane (ug/L) 410 60 550 70 39 13 61 23 11 74 5.5 romoform (ug/L) 410 320 410 3800 470 430 87 720 220 52 510 8.1 ibromochloromethane (ug/L) 110 22 180 24 <20 <10 <20 <10 <10 <20 520 52 510 8.1 ibromochloromethane (ug/L) TOTAL THMFP (ug/L) 3720 492 4530 564 469 100 781 243 63 643 13.0 hlorophyli-a neophytin-a eld Measurements: Femperature 15.3 14.9 15.1 14.5 15.4 15.2 15.7 15.4 15.7 14.5 15.9 EC 427.6 145 563 202.6 170.5 118.6 206.4 124.4 142.5 202.6 121.7 DO 5.97 7.03 3.83 5.14 4.74 7.89 3.04 6.66 8.11 5.14 8.4													
total Phosphorus (mg/L)	Total Kjeldahl Nitrogen (mg/L)												
total Phosphorus (mg/L)	Die Orthanhaenhate (mg/l.)												
issolved Sulfate (mg/L)	Dis. Orthophosphate (mg/L)												
issolved Sulfate (mg/L)	Total Phosphorus (mg/l)												
romodichloromethane (ug/L)	Total Filosphorus (mg/L)												
romodichloromethane (ug/L)	Dissolved Sulfate (mg/L)											17	
romoform (ug/L)													
hloroform (ug/L) 3200 410 3800 470 430 87 720 220 52 510 8.1 ibromochloromethane (ug/L) 110 22 180 24 <20 <10 <20 <10 <10 26 8.0 ibromochloromethane (ug/L) 3720 492 4530 564 469 100 781 243 63 643 13.0 hlorophyll-a heophytin-a leid Measurements: Temperature 15.3 14.9 15.1 14.5 15.4 15.2 15.7 15.4 15.7 14.5 15.9 isc 427.6 145 563 202.6 170.5 118.6 206.4 124.4 142.5 202.6 121.7 isc 500 5.97 7.03 3.83 5.14 4.74 7.89 3.04 6.66 8.11 5.14 8.4	Bromodichloromethane (ug/L)	410	60	550	70	39	13	61	23	11	74		5.56
ibromochloromethane (ug/L)	Bromoform (ug/L)	<100	<20	<167	<20					<10	33		N/A
TOTAL THMFP (ug/L) 3720 492 4530 564 469 100 781 243 63 643 13.0 hlorophyll-a heophytin-a eld Measurements: Temperature 15.3 14.9 15.1 14.5 15.4 15.2 15.7 15.4 15.7 14.5 15.9 EC 427.6 145 563 202.6 170.5 118.6 206.4 124.4 142.5 202.6 121.7 200 5.97 7.03 3.83 5.14 4.74 7.89 3.04 6.66 8.11 5.14 8.4	Chloroform (ug/L)												8.1
hlorophyll-a heophytin-a heoph	Dibromochloromethane (ug/L)												8.00
heophytin-a eld Measurements: Temperature 15.3 14.9 15.1 14.5 15.4 15.2 15.7 15.4 15.7 14.5 15.9 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0	TOTAL THMFP (ug/L)	3720	492	4530	564	469	100	781	243	63	643		13.0
heophytin-a eld Measurements: Temperature 15.3 14.9 15.1 14.5 15.4 15.2 15.7 15.4 15.7 14.5 15.9 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0													
eld Measurements: Temperature 15.3 14.9 15.1 14.5 15.4 15.2 15.7 15.4 15.7 14.5 15.9 EC 427.6 145 563 202.6 170.5 118.6 206.4 124.4 142.5 202.6 121.7 DO 5.97 7.03 3.83 5.14 4.74 7.89 3.04 6.66 8.11 5.14 8.4													
Temperature 15.3 14.9 15.1 14.5 15.4 15.2 15.7 15.4 15.7 14.5 15.9 EC 427.6 145 563 202.6 170.5 118.6 206.4 124.4 142.5 202.6 121.7 DO 5.97 7.03 3.83 5.14 4.74 7.89 3.04 6.66 8.11 5.14 8.4	-neopnytin-a												
Temperature 15.3 14.9 15.1 14.5 15.4 15.2 15.7 15.4 15.7 14.5 15.9 EC 427.6 145 563 202.6 170.5 118.6 206.4 124.4 142.5 202.6 121.7 DO 5.97 7.03 3.83 5.14 4.74 7.89 3.04 6.66 8.11 5.14 8.4	Field Measurements:											·	· ·
EC 427.6 145 563 202.6 170.5 118.6 206.4 124.4 142.5 202.6 121.7 00 5.97 7.03 3.83 5.14 4.74 7.89 3.04 6.66 8.11 5.14 8.4		15.3	14 0	15.1	14.5	15.4	15.2	15.7	15.4	15.7	115	15.0	
00 5.97 7.03 3.83 5.14 4.74 7.89 3.04 6.66 8.11 5.14 8.4	EC EC												
	DO												
11	pH												
	Turbidity												

5.38

7.05

105

7.99

7.11

4.74

7.97

6.97

122

7.63

7.25

18

8.22

7.43

0.55

7.99

7.11

4.74

8.96

7.01

7.68

7.16

33.1

5.77

6.64

131

DO pH

Turbidity

6.26

6.89

62.8

5.11

6.81

149

SPECIAL MULTIPURPO	SE APPL	IED RES	EARCH	TECHNO	LOGY S	TATION	(SMART	S)	1			
EXPERIMENT 2 - Janua	ary 21, 19	999 throu	gh Janua	гу 20, 20	00		200			Approximation of		
SURFACE WATER												
EVENT 10												
				S	ample d	ate: May	/ 26, 199	<u> </u> 9	. L		1	
]		T .					Dup.		QA/QC
PARAMETER	TANK	1 TANK 2	TANK 3	TANK 4	TANK 5	TANK	TANK 7	TANK 8	TANK 9	TANK 2	Supply	RPD
TOC (mg/L)	80.02	2 11.6	115	11.8	12.3	1.4	21.8	3.8	1.1	10.3		11.87
DOC (mg/L)	76.9	9.9	109	11.1	6.9	1.4	15.7	3.5	1.1	9.7	0.8	2.04
UVA (mg/L)	3.86	0.481	5.71	0.524	0.355	0.047	0.968	0.173	0.022	0.503	0.013	4.47
Specific Absorbance Calc.	5.02	2 4.86	5.24	4.72	5.14	3.36	6.17	4.94	2.00	5.19	1.63	6.51
Alkalinity (mg/L)											44	
A	0.00	0.04	0.0	0.00	<0.04	0.00	0.00	0.04	<0.01	0.04		0.00
Ammonia (mg/L)	0.09	0.04	0.3	0.03	<0.01	0.03	0.02	0.04	<0.01	0.04		0.00
Bromide (mg/L)	 										<0.01	
Color (Color Units)	800	175	800	125	250	15	400	70	<5	150		15.38
Total Iron (mg/L)											0.129	
Nitrate + Nitrite (mg/L)												
Total Kjeldahl Nitrogen (mg/L)												
Dis. Orthophosphate (mg/L)												
Total Phosphorus (mg/L)												
Dissolved Sulfate (mg/L)											20.0	
Bromodichloromethane (ug/L)	620	90	1000	110	42	10	89	24	<10	88		2.25
Bromoform (ug/L)	<167	<20	<250	<30	<42	<10	<30	<10	<10	<20		0.0
Chloroform (ug/L)	4800		6600	740		120		260	56	730		1.3
Dibromochloromethane (ug/L) TOTAL THMFP (ug/L)	<167 5420	<20 810	<250 7600	<30 850	<20 682	<10 130	<30 1389	<10 284	<10 56	<20 818		0.00
Chlorophyll-a												
Pheophytin-a												
Field Measurements:												
Temperature	21.7	22.0	21.6	21.6	22.1	22.6	22.9	22.9	22.9	22	23.4	
EC	632	219	1029	251	236	179	234	187	180	219	161	
DO	4.42	5.21	1.34	6.8	4.51	7.22		5.41	8.47	5.21	7.67	
pH	6.7	6.91	6.74	7.14	6.64	6.94	6.64	6.91	7.13	6.91	6.86	
Turbidity												

	OF ADDI	TED DEC	EADOLL	TEOLINIA	VI 00V 0		ZOLLA DA					
EXPERIMENT 2 - January		5.00				STATION	(SMARI	S) 의 휴급				
										<u></u>		
SURFACE WATER		11. — 1 1 11. manus dan 21.00000.										
EVENT 11												
		_1	1		Sample o	date: Jur	ne 9, 199	9	1	L		<u> </u>
	1		T			7				Dup.	Water	QA/QC
PARAMETER	TANK	1 TANK 2	TANK 3	TANK 4	TANK 5	TANK 6	TANK 7	TANK 8	TANK 9			
	1	1				 				 	1	
OC (mg/L)	96.1	9.2	143	9.1	11.3	1.6	22.8	4	1.1	1.4		13.33
DOC (mg/L)	88.3	7.4	134	8.2	7.6	1.3	17.2	3.2	1.0	1.3	1.0	0.00
UVA (mg/L)	4.36	0.396	6.82	0.394	0.411	0.034	1.03	0.144	0.019	0.034	0.015	0.00
pecific Absorbance Calc.	4.94	5.35	5.09	4.80	5.41	2.62	5.99	4.50	1.90	2.62	1.50	0.00
	ļ											
Alkalinity (mg/L)	99	61	319	64	24	48	44	47	49	48	51	0.00
	0.00	0.00	0.05	0.00	0.04	0.00	40.04	0.00	c0.04	0.00		0.00
mmonia (mg/L)	0.02	0.02	0.05	0.03	0.01	0.02	<0.01	0.03	<0.01	0.02		0.00
Danida (m. 11)	0.92	0.08	1.85	0.1	0.05	<0.01	0.11	0.02	<0.01	<0.01	<0.01	0.00
Bromide (mg/L)	0.92	0.00	1.05	0.1	0.05	~0.01	0.11	0.02	~0.01	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	~0.01	0.00
Color (Color Units)	800	175	1000	120	200	15	450	60	<5	10		40.00
Color (Color Offics)	000	173	1000	120	200	10	730	00		10		70.00
otal Iron (mg/L)											0.076	
i ctal from (mg/L)	-										0.070	
Nitrate + Nitrite (mg/L)												
warde vitalité (mg/2)												
otal Kjeldahl Nitrogen (mg/L)	6.5	0.6	7.5	0.7	0.8	<0.1	1.6	0.4	<0.1	0.1		N/A

Dis. Orthophosphate (mg/L)												
Total Phosphorus (mg/L)	0.58	0.2	0.65	0.15	0.13	0.14	0.53	0.18	0.1	0.13		7.41
Dissolved Sulfate (mg/L)											23.0	
Bromodichloromethane (ug/L)	730	67	1300	82	47	10	93		<10	10		0.00
Bromoform (ug/L)	<167					<10			<10	<10		0.00
Chloroform (ug/L)	5600	530	8000	540	750	100	1400	250	57	94		6.19
Dibromochloromethane (ug/L)									<10	<10		0.00
TOTAL THMFP (ug/L)	6330	597	9300	622	797	110	1493	273	57	104		5.61
Chlorophyll-a												
Pheophytin-a												
Field Mossurements:												
Field Measurements: Temperature	19.2	19.7	19.0	18.9	19.3	19.8	20.1	19.9	20.0	19.8	20.9	
EC	664	211	1177	232	243	181	238	185	182	181	176	
DO	4.81	6.4	1.51	7.61	5.68	7.92	1.37	6.4	8.65	7.92	8.85	
pH	6.75	7.11	6.89	7.27	7.07	7.07	6.97	7.22	7.56	7.07	7.04	
Turbidity	176	90.9	108	35.4	63.8	6.08	124	41.4	0.62	6.08	1.15	
	.,,					0.00			J.U.	0.00		

SPECIAL MULTIPURPO EXPERIMENT 2 - Janua				17.54		TATION	(SMAR	rs)			All S	
SURFACE WATER						-						
MAN				ļ		l :			-		ļ	
EVENT 12	.	<u> </u>	1		<u> </u>		<u> </u>				<u> </u>	
		1		S	ample d	ate: Jun	e 23, 199	99	· · · · · · · · · · · · · · · · · · ·	7	T	
DADAMETED	TANK	TANK	TANK	TANK	TANK	TANUC	TANUZ	TANK	TANK	Dup.		QA/Q(
PARAMETER	IANK	TANK 2	I ANK 3	I ANK 4	IANKS	IANK	IANK /	TANK 8	IANKS	I ANK 8	Supply	RPD
TOC (mg/L)	105	9.1	161	9.2	12.3	1.7	24.9	5	1.1	5.7		13.0
DOC (mg/L)	99.6	7.3	146	8.3	8.9	1.4	18.6	4	1.2	4.1	1.1	2.47
UVA (mg/L)	4.77	0.396	8.92	0.416	0.495	0.047	1.16	0.222	0.019	0.205	0.015	7.9
Specific Absorbance Calc.	4.79	5.42	6.11	5.01	5.56	3.36	6.24	5.55	1.58	5.00	1.36	10.4
Alkalinity (mg/L)											49	
Ammonia (mg/L)	0.03	0.02	0.38	0.05	<0.01	0.02	0.02	0.04	0.02	0.04	<0.01	0.0
Bromide (mg/L)											<0.01	
Color (Color Units)	1000	125	1600	100	250	15	600	100	<5	100		0.0
Total Iron (mg/L)											0.054	
Nitrate + Nitrite (mg/L)											0.09	
Total Kjeldahl Nitrogen (mg/L)											0.1	
Dis. Orthophosphate (mg/L)		-									0.08	
Total Phosphorus (mg/L)											0.12	
Dissolved Sulfate (mg/L)											17.0	
Bromodichloromethane (ug/L)	790	68	1400	86	49	<10	89	23	<10	24		4.26
Bromoform (ug/L)				<20	<20	<10		<10	<10	<10		0.0
Chloroform (ug/L)	5400	490	7900	530	780	98		280	58	310		10.1
Dibromochloromethane (ug/L)					<20	<10			<10	<10		0.00
TOTAL THMFP (ug/L)	6190	558	9300	616	829	98	1489	303	58	334		9.7
Chlorophyllic												
Chlorophyll-a Pheophytin-a								·				
i noopiiyuii-a												
Field Measurements:												
Temperature	25.5	26.0	25.3	25.9	26.1	26.4	27.0	26.8	26.7	26.8	25.6	
EC	717	209	1378	234	253	177	246	180	185	180	165	
DO	3.12	5.06	1.13	5.07	4.44	7.38		3.89	8.5	3.89	8.61	
pH	6.57	6.79	6.73	6.98	6.81	7.02	6.77	7.25	7.27	7.25	6.79	
Turbidity	210	160	61.8	32.4	60.6	6.48	146	63.7	0.44	63.7	1.23	

PECIAL MULTIPURPO	SE APPL	IED RES	EARCH	TECHNO	OLOGY	STATION	(SMAR	rs)				
EXPERIMENT 2 - Janua	ary 21, 19	99 throu	gh Janua	iry 20, 20	000			4,000				
	<u> </u>									, , to the table of the table of the table of the table of the table of tab		
SURFACE WATER				ļ		<u> </u>			<u> </u>	ļ		
EVENT 13							1				<u> </u>	
	<u> </u>			,	Sample	date: Ju	ly 7, 199	9	·	,		
	11									Dup.		QA/QC
PARAMETER	TANK	1 TANK 2	IANK 3	IANK 4	IANK	I ANK 6	IANK /	IANK 8	IANK 9	TANK 2	Supply	RPD
OC (mg/L)	113.8	9.32	184.5	8.91	12.5	1.93	23.6	4.62	1.19	9.3		0.43
OC (IIIg/L)	113.0	9.52	104.0	0.91	12.0	1.30	23.0	4.02	1.13	3.5	<u> </u>	0.43
OC (mg/L)	106.5	8.05	170.1	8.28	10.3	1.39	19.54	3.66	1.07	8.04	1.1	0.12
	#		1									
UVA (mg/L)	5.58	0.421	8.05	0.413	0.609	0.05	1.2	0.181	0.02	0.419	0.017	0.48
pecific Absorbance Calc.	5.24	5.23	4.73	4.99	5.91	3.60	6.14	4.95	1.87	5.21	1.55	0.35
Alkalinity (mg/L)	142	57	438	62	31	44	52	47	53	58	47	1.74
	0.00	0.06	4.0	0.07	<0.01	0.00	0.01	0.04	<0.01	0.06		0.00
mmonia (mg/L)	0.02	0.06	1.2	0.07	<0.01	0.02	0.01	0.04	<0.01	0.06		0.00
Bromide (mg/L)	1.38	0.11	2.68	0.11	0.00	<0.01	0.14	0.02	0.01	0.11	<0.01	0.00
promide (mg/L)	1.30	0.11	2.00	0.11	0.03	10.01	0.14	0.02	0.01	0.11	10.01	0.00
Color (Color Units)	1400	140	1600	80	350	20	500	80	<5	150		6.90
otal Iron (mg/L)											0.338	
Nitrate + Nitrite (mg/L)												
	<u> </u>			<u> </u>								
Total Kjeldahl Nitrogen (mg/L)	7.2	8.0	13	0.9	1.3	0.2	2.1	0.6	0.1	0.9		11.76
								-				
Dis. Orthophosphate (mg/L)												
Total Phosphorus (mg/L)	0.62	0.2	0.78	0.19	0.26	0.16	0.61	0.24	0.07	0.23		13.95
Total Filosphorus (mg/L)	0.02	0.2	0.70	0.15	0.20	0.10	0.01	0.24	0.01	0.20		10.00
Dissolved Sulfate (mg/L)							·				16.0	
Bromodichloromethane (ug/L)	890	71	1700	74	47	<10	96	18	<10	69		2.86
Bromoform (ug/L)	<250				<20	<10		<10	<10	<20		0.00
Chloroform (ug/L)	5600	500	8500	480	850	100	1400	260	48	490		2.02
Dibromochloromethane (ug/L)					<20	<10		<10	<10	<20		0.00
TOTAL THMFP (ug/L)	6490	571	10200	554	897	100	1496	278	48	559		2.12
Chlanashull a												
Chlorophyll-a												
Pheophytin-a				-								
Field Measurements:												
Temperature	22.7	23.2	22.9	22.8	23.1	23.3	24.2	23.8	25.0	23.2	22.5	
EC	780	177	1513	195	254	139	246	144	183	177	149	
DO	4.27	5.12		4.33	2.67	5.7		4.45	7.3	5.12	6.45	
pH	6.37	6.64	6.76	6.94	7.05	7.19	7.23	7.33	7.24	6.64		
Turbidity	152	105	52.7	30.1		6.52	170	52.4		105		

SPECIAL MULTIPURPO	SE APPI	JED RES	EARCH	TECHNO	DLOGY S	NOITATE	(SMAR	rs)				
EXPERIMENT 2 - Janu	ary 21, 1	999 throu	gh Janua	ıry 20, 20	00						and the second	
CUDEACE WATER												
SURFACE WATER						-		· · · · · · · · · · · · · · · · · · ·				
EVENT 14				J	<u></u>	<u> </u>	<u> </u>		1	L	<u> </u>	
			T		sample of	late: Jul	y 21, 199	9	T	Dun	Motor	04/06
PARAMETER	TANK	1 TANK 2	TANK 3	TANK 4	TANK 5	TANK	TANK 7	TANK 8	TANK 9	Dup.		QA/Q0 RPD
TOC (mg/L)	134	6.1	211	8.6	15.5	1.9	26.4	3.5	1.2	5.8		5.0
DOC (mg/L)	12	1 5	200	7	12.2	1.4	20.8	3.3	1.3	4.8	0.9	6.06
UVA (mg/L)	5.82	0.244	8.6	0.365	0.729	0.04	1.31	0.151	0.02	0.259	0.015	5.9
Specific Absorbance Calc.	4.8	4.78	4.30	5.00	5.98	2.86	6.30	4.58	1.54	5.40	1.67	12.0
Alkalinity (mg/L)											41	
Ammonia (mg/L)	0.04	0.03	0.09	0.08	<0.01	0.02	<0.01	0.04	<0.01	0.02		40.0
Bromide (mg/L)											<0.01	-
Color (Color Units)	1000	125	1500	120	300	15	525	80	<5	100		22.2
Total Iron (mg/L)											0.142	
Nitrate + Nitrite (mg/L)												
Total Kjeldahl Nitrogen (mg/L)												
Dis. Orthophosphate (mg/L)												
Total Phosphorus (mg/L)											·	
Dissolved Sulfate (mg/L)											22	
Bromodichloromethane (ug/L)	1100	47	2100	78	67	10	110	22	11	49		4.17
Bromoform (ug/L)	<250	<10	<500	<20	<30	<10	<50	<10	<10	<10		0.0
Chloroform (ug/L)	6200		9000	410	1000	94		250	58			6.4
Dibromochloromethane (ug/L)	<250	<10	<500	<20	<30	<10	<50	<10	<10	<10		0.00
TOTAL THMFP (ug/L)	7300	347	11100	488	1067	104	1410	272	69	369		6.15
Chlorophyll-a	<0.05	<0.05	<0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		0.00
Pheophytin-a	<0.05	<0.05	<0.05	0.12	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		0.00
Field Measurements:												
Temperature	19.8	20.1	20.2	19.8	20.2	20.4	21.0	20.8	21.2	20.1	20.9	
EC	851	162	1597	192	260	146	251	150	185	162	149	
DO	3.86	7.52		3.91	4.47	7.87	1.31	6.23	8.97	7.52	8.55	
рН	6.24	6.39	6.75	6.75	7.03	7.11	7.08	7.41	7.62	6.39	7.05	
Turbidity	95.3	71.8	67.9	64.6	51.4	7.84	181	42.5	0.72	71.8		

SPECIAL MULTIPURPOS						STATION	(SMAR	rs)				
EXPERIMENT 2 - Janua	ry 21, 19	999 throu	gh Janua	iry 20, 20	000			 	1	1		
SURFACE WATER	 				<u> </u>							
	 		-	ļ		+	<u> </u>	<u> </u>			ļ	
EVENT 15		<u> </u>	<u> </u>		1		<u> </u>		<u> </u>		i	<u></u>
				S	ample d	ate: Aug	ust 4, 19	99		-	·p	
									<u> </u>	Dup.	1	QA/QC
PARAMETER	TANK	1 TANK 2	TANK 3	TANK 4	TANK	TANK	TANK 7	TANK 8	TANK 9	TANK 4	Supply	RPD
	400	-	045	7.0	444	ļ.,	05.5	ļ <u>.</u>	10			0.00
OC (mg/L)	135	4.9	215	7.6	14.4	1.7	25.5	4	1.2	7.6	ļ	0.00
DOC (mall)	128	3.7	205	6.3	12.4	1.2	20.8	3.2	1.1	6.3	0.8	0.00
IDOC (mg/L)	120	3.7	203	0.3	12.4	1.2	20.0	3.2	1.1	0.3	0.0	0.00
JUVA (mg/L)	6.11	0.183	9.34	0.309	0.749	0.037	1.23	0.164	0.02	0.31	0.014	0.32
OVX (mg/L)		0.100	0.01	0.000	0.7 10	0.007	1.20	0.101	0.02	0.01	0.011	0.02
Specific Absorbance Calc.	4.77	4.95	4.56	4.90	6.04	3.08	5.91	5.13	1.82	4.92	1.75	0.32
,	1	1					1			† -		
Alkalinity (mg/L)	178	46	497	58	34	46	55	45	58	56	39	3.51
Ammonia (mg/L)	0.04	0.01	0.12	0.04	<0.01	0.02	0.01	0.03	<0.01	0.04		0.00
Bromide (mg/L)	1.93	0.05	3.71	0.1	0.09	<0.01	0.16	0.02	<0.01	0.1	<0.01	0.00
								·				
Color (Color Units)	1000	35	1000	80	175	15	300	40	<5	60		28.57
						ļ				ļ	0.005	
Total Iron (mg/L)							<u> </u>			ļ	0.225	
Alitenta I Alitrita (ma/l)		-								ļ		
Nitrate + Nitrite (mg/L)										-		
Total Kjeldahl Nitrogen (mg/L)	7.3	0.6	11	0.8	1.2	0.2	1.9	0.6	0.3	0.9		11.76
Lotal Holdani Willogon (mg/L)	7.0	0.0			1.2	0.2	1.0	0.0	0.0	0.0		110
Dis. Orthophosphate (mg/L)												
Total Phosphorus (mg/L)	0.56	0.2	0.73	0.23	0.26	0.17	0.55	0.24	0.02	0.29		23.08
Dissolved Sulfate (mg/L)											20	
·												
Bromodichloromethane (ug/L)	7740	40	2300	72	71	10	130	22	11	71		1.40
3romoform (ug/L)	1390			<20	<30	<10	<50	<10	<10	<20		0.00
Chloroform (ug/L)	266	230	9300	360		80	1500	240	57	350		2.82
Dibromochloromethane (ug/L)		<10	550			<10		<10	<10	<20		0.00
TOTAL THMFP (ug/L)	9396	270	12150	432	1071	90	1630	262	68	421		2.58
Chlorophyll o		•										
Chiorophyll-a												
Pheophytin-a			· · ·									
Field Measurements:						· · ·						
Temperature	23.8	24.1	24.2	23.6	24	23.9	24.6	24.6	24.9	23.6	22.6	
EC	896	169	1675	199	268	158	261	162	190	199	159	
DO	3.97	6.05	1.01	2.98	4.81	7.54	1.07	5.29	9.43	2.98	8.54	
pH	6.31	6.52	6.72	6.85	7.01	7.16	7	7.13	7.43	6.85	6.95	
Turbidity	107	75.2	77.4	139	50.5	19.3	218	60.3	0.39	139	1.76	

SPECIAL MULTIPURPOSE APPLIED RESEARCH TECHNOLOGY STATION (SMARTS) EXPERIMENT 2 - January 21, 1999 through January 20, 2000 SURFACE WATER **EVENT 16** Sample date: August 19, 1999 Dup. Water QA/Q0 TANK 1 TANK 2 TANK 3 TANK 4 TANK 5 TANK 6 TANK 7 TANK 8 TANK 9 TANK 8 Supply **PARAMETER RPD** TOC (mg/L) 142 3.9 228 3.1 14.8 1.7 23.1 2.8 1.1 3.2 13.3 1.4 140 3.5 224 3 13.5 2.7 DOC (mg/L) 21.6 1.1 2.6 1.2 3.77 UVA (mg/L) 6.82 0.15 8.53 0.112 0.808 0.034 1.37 0.12 0.02 0.116 0.021 3.3 4.44 4.87 4.29 3.81 3.73 2.43 1.82 5.99 6.34 4.46 1.75 0.3 Specific Absorbance Calc. 58 Alkalinity (mg/L) Ammonia (mg/L) 0.03 0.03 0.24 0.04 0.01 0.02 0.01 0.02 < 0.01 0.03 40.0 <0.01 Bromide (mg/L) 1200 1750 15.3 70 40 250 10 595 70 <5 Color (Color Units) 60 Total Iron (mg/L) 0.081 Nitrate + Nitrite (mg/L) Total Kjeldahl Nitrogen (mg/L) Dis. Orthophosphate (mg/L) Total Phosphorus (mg/L) 18 Dissolved Sulfate (mg/L) 1400 35 2600 32 74 13 140 22 Bromodichloromethane (ug/L) 11 21 4.65 <357 <10 <500 <10 <30 <10 <50 <10 <10 <10 0.0 Bromoform (ug/L) 210 180 6800 10000 1100 84 1600 190 52 170 Chloroform (ug/L) 11. <357 660 < 10 Dibromochloromethane (ug/L) <10 <30 <10 <50 <10 <10 <10 0.00 TOTAL THMFP (ug/L) 8200 245 13260 212 1174 97 1740 212 63 191 10.4 < 0.05 < 0.05 < 0.05 < 0.05 0.23 < 0.05 < 0.05 <0.05 0.94 Chlorophyll-a 0.66 n/a < 0.05 < 0.05 < 0.05 < 0.05 0.19 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 0.00 Pheophytin-a Field Measurements: 21.6 21.8 22 21.5 22.2 21.8 22.9 22.5 23.1 22.5 22.0 Temperature 903 198 1731 198 270 261 187 188 187 188 194 EC 3.03 6.37 DO 5.77 1.42 5.01 7.68 1.97 6.07 9.27 6.07 8.05 6.84 6.88 7.12 7.04 6.90 7.25 6.95 7.2 8.37 7.2 7.03 рΗ 132 94.4 94.8 15.9 50 5.6 159 37.2 0.65 37.2 **Turbidity**

SPECIAL MULTIPURPO: EXPERIMENT 2 - January						STATION	(SMART	(S)			Application of the second seco	
							ļ:					
SURFACE WATER		ļ			ļ <u>.</u>	ļ				ļ	-	ļ
EVENT 17		<u> </u>			<u></u>							
		7		San	nple date	e: Septe	mber 1,	1999			·	
	1						·		<u> </u>	Dup.		QA/QC
PARAMETER	TANK	1 TANK 2	TANK 3	TANK 4	TANK 5	TANK	TANK 7	TANK 8	TANK 9	TANK 4	Supply	RPD
OC (mg/L)	151	6.6	239	6.4	15.9	1.9	25.2	3.6	1.4	6.6		3.08
DOC (mg/L)	146	5.9	224	5.6	14.1	1.4	21.1	3.1	1.1	5.6	1.2	0.00
UVA (mg/L)	7.04	0.312	11.6	0.283	0.876	0.042	1.34	0.152	0.02	0.281	0.023	0.71
pecific Absorbance Calc.	4.82	5.29	5.18	5.05	6.21	3.00	6.35	4.90	1.82	5.02	1.92	0.71
Alkalinity (mg/L)	181	62	536	62	34	54	61	55	54	61	55	1.63
mmonia (mg/L)	0.03	0.11	0.14	0.18	0.01	0.02	<0.01	0.03	<0.01	0.18		0.00
Bromide (mg/L)	2.44	0.07	4.56	0.07	0.11	0.01	0.18	0.02	<0.01	0.07	<0.01	0.00
Color (Color Units)	1200	150	1600	150	300	10	480	70	<5	140		6.90
otal Iron (mg/L)											0.155	
Nitrate + Nitrite (mg/L)												
otal Kjeldahl Nitrogen (mg/L)	9	0.9	12	0.9	1.3	0.2	2.1	0.5	0.1	0.9		0.00
Dis. Orthophosphate (mg/L)												
Total Phosphorus (mg/L)	0.68	0.25	0.96	0.24	0.3	0.16	0.66	0.23	0.01	0.25	·	4.08
Dissolved Sulfate (mg/L)											22	
Bromodichloromethane (ug/L)	1800	67	3000	65	88	16	140		<10	61		6.35
Fromoform (ug/L)				<20	<30	<10		<10	<10	<20		0.00
Chloroform (ug/L)	8600	470	13000	420	1500	110	1800	260	57			4.88
Dibromochloromethane (ug/L)	380		720		<30	<10		<10	<10	<20		0.00
TOTAL THMFP (ug/L)	10780	537	16720	485	1588	126	1940	282	57	461		5.07
Chlassah di												
Chlorophyll-a												
Pheophytin-a												
Field Measurements:												
Temperature	21.8	21.9	22.0	22.0	22.7	22.1	22.7	22.3	23.0	22.0	21.9	
EC	938	205	1781	204	273	184	265	185	186	204	187	
DO	3.46	3.63		3.8	3.5	6.73	2.4	4.99	7.85	3.8	7.54	
рН	6.85	6.68	7.12	6.88	6.73	7.17	7.0	1.08	8.18	6.88	6.9	
Turbidity	136	93.6	117	101	44.8	5.05	146	42.5	0.45	101		

SPECIAL MULTIPURPOS	SE APPL	IED RES	EARCH	TECHNO	DLOGYS	NOITAT	(SMAR	rs)				
EXPERIMENT 2 - Janua	ary 21, 19	999 throu	gh Janua	iry 20, 20	000							
SURFACE WATER						· · · · · · · · · · · · · · · · · · ·				ļ		-
EVENT 18						İ						
				Sam	ple date	: Septen	nber 15,	1999				
	1			ļ			ļ			Dup.		QA/Q0
PARAMETER	TANK	1 TANK 2	TANK 3	TANK 4	TANK 5	TANK 6	TANK 7	TANK 8	TANK 9	TANK 2	Supply	RPD
				<u> </u>	10.0	ļ	00.4		1.0	ļ		
TOC (mg/L)	164	4.4	262	6.5	16.6	2	26.4	3.2	1.6	4.4		0.0
DOC (/L)	160	3.9	248	6.2	15.5	1.6	22.6	3	1.2	4	1.4	2.53
DOC (mg/L)	100	3.9	240	0.2	15.5	1.0	22.0	3	1.2	+ +	1.4	2.55
UVA (mg/L)	7.28	0.184	10.92	0.303	0.977	0.038	1.49	0.13	0.019	0.177	0.023	3.8
		0	,,,,,		1		1	1			0.000	0.0
Specific Absorbance Calc.	4.55	4.72	4.40	4.89	6.30	2.38	6.59	4.33	1.58	4.43	1.64	6.4
Alkalinity (mg/L)											64	
Ammonia (mg/L)	0.03	0.02	0.29	0.05	0.01	0.02	0.01	0.04	0.01	0.02		0.0
	 											
Bromide (mg/L)							ļ		ļ		<0.01	
	4200	90	4000	90	250	10	40	70	-E	100		22.2
Color (Color Units)	1200	80	1800	80	250	10	40	70	<5	100		22.2
Total Iron (mg/L)										1	0.254	
Total IIOII (IIIg/L)					<u> </u>						0.204	
Nitrate + Nitrite (mg/L)												
												1
Total Kjeldahl Nitrogen (mg/L)												
Dis. Orthophosphate (mg/L)										·		
Total Phosphorus (mg/L)												
											- 00	
Dissolved Sulfate (mg/L)											26	
Bromodichloromethane (ug/L)	1800	44	3500	70	84	16	170	26	<10	42		4.65
Bromoform (ug/L)	<500			<20	<30	<10	<50	<10	<10	<10		0.0
Chloroform (ug/L)	8500	290	14000	400	1500	96		230	50	280		3.5
Dibromochloromethane (ug/L)	<500	<10	770		<30	<10	<50	<10	<10	<10		0.00
TOTAL THMFP (ug/L)	10300	334	18270	470	1584	112	2070	256	50	322		3.6
,,												
Chlorophyll-a		.										
Pheophytin-a												
Field Measurements:						_						
Temperature	21.3	21.7		21.9	22.1	21.7	22.1	22.2	22.4	21.7	21.5	
EC	926	218		227	271	213	262	213	186	218	214	
DO	3.86	5.83		5.11	4.23	7.28	1.17	4.62	7.97	5.83	7.9	
pH	7.32	7.10		6.91	6.96	7.52	6.95	7.02	8.53	7.10	7.04	
Turbidity	159	57.7		47.6	44	3.25	132	39.5	0.49	57.7		

PECIAL MULTIPURPOSE APPLIED RESEARCH TECHNOLOGY STATION (SMARTS) EXPERIMENT 2 - January 21, 1999 through January 20, 2000 URFACE WATER **EVENT 19** Sample date: September 29, 1999 Dup. Water QA/QC TANK 1 TANK 2 TANK 3 TANK 4 TANK 5 TANK 6 TANK 7 TANK 8 TANK 9 TANK 6 Supply **PARAMETER** RPD OC (mg/L) 161 3.7 260 6 17.1 1.7 25.7 1.2 1.3 26.67 1.2 2.2 1.1 1.2 0.00 158 3.4 245 5.5 15.6 21.8 1 OC (mg/L) 0.273 0.035 0.096 0.019 0.034 0.018 7.69 0.164 11.09 1.44 2.90 UVA (mg/L) 4.87 4.82 4.53 4.96 6.41 2.92 6.61 4.36 1.73 2.83 1.80 2.90 pecific Absorbance Calc. 62 177 526 43 63 62 59 54 1.57 Alkalinity (mg/L) 65 68 64 66.67 0.03 < 0.01 0.01 < 0.01 0.02 < 0.01 0.03 < 0.01 mmonia (mg/L) 0.04 0.01 2.78 0.04 2.63 0.08 0.12 < 0.01 0.21 0.02 0.01 0.01 < 0.01 romide (mg/L) 0.00 1200 2000 10 600 60 < 5 80 80 300 10 Color (Color Units) 0.376 otal Iron (mg/L) Nitrate + Nitrite (mg/L) 0.2 0.4 < 0.1 0.00 14 2.3 0.2 9.6 0.6 0.7 1.4 otal Kjeldahl Nitrogen (mg/L) is. Orthophosphate (mg/L) 0.83 0.22 1 0.2 0.34 0.16 0.65 0.19 0.01 0.15 6.45 Total Phosphorus (mg/L) 16 issolved Sulfate (mg/L) 2000 38 3800 74 100 14 170 23 < 10 14 0.00 romodichloromethane (ug/L) <10 0.00 <357 <10 <500 <20 <30 <10 <50 <10 <10 romoform (ug/L) 8900 240 14000 420 1700 86 2000 190 52 88 2.30 Chioroform (ug/L) 400 < 10 840 < 20 <30 <10 <50 <10 <10 <10 0.00 Dibromochloromethane (ug/L) 100 1.98 11300 278 18640 2170 213 52 102 TOTAL THMFP (ug/L) 494 1800 Chlorophyll-a heophytin-a Field Measurements: 22.6 22.4 22.2 22.5 23.6 22.6 23.1 22.7 22.9 22.6 21.6 Temperature 198 964 190 1819 277 186 188 188 186 160 265 EC 4.82 6.48 3.78 5.90 4.31 6.77 <1 4.68 8 6.77 8.48 DO 7.17 7.19 7.45 6.65 6.99 6.68 6.82 8.35 6.99 6.78 6.97 рΗ 162 87.3 247 126 30.7 **Turbidity** 51 46.3 3.56 0.38 3.56

SPECIAL MULTIPLEPA	CE ADDI	IEN DEC	ENDOL	TECHNIC	או חפע פ	TATION	/CNAAD	TC)				
SPECIAL MULTIPURPO EXPERIMENT 2 - January					100	STATION	I (SWAR	15)				
SURFACE WATER EVENT 20												
of the Basis de Product System (separate of the security separate structure) and the security of the security separate structure of the security se			1	Sa	mple da	te: Octo	ber 13, 1	999	<u></u>			<u> </u>
AND A STATE OF THE PROPERTY OF			1	T				T		Dup.	Water	QA/Q0
PARAMETER	TANK	1 TANK 2	TANK 3	TANK 4	TANK S	TANK	TANK 7	TANK 8	TANK 9	TANK 4	Supply	RPD
TOC (mg/L)	174	3.7	270	13.1	18	1.6	25.2	2.6	1.2	12.9		1.54
DOC ((1))	164	3.4	250	11.7	16.1	1.2	22.2	2.1	1 1	11 0	0.0	0.05
DOC (mg/L)	102	3.4	250	11.7	10.1	1.2	22.3	2.1	1.1	11.8	0.8	0.85
UVA (mg/L)	8.73	0.173	12.11	0.632	1.04	0.033	1.42	0.091	0.02	0.633	0.016	0.10
(111g/L)	# 0	0.170	12	0.002	1.0	0.000	1.12	0.001	0.02	0.000	0.010	0.11
Specific Absorbance Calc.	5.32	5.09	4.84	5.40	6.46	2.75	6.37	4.33	1.82	5.36	2.00	0.6
Alkalinity (mg/L)											44	
Ammonia (mg/L)	0.03	<0.01	0.05	0.03	<0.01	0.02	<0.01	0.03	<0.01	0.02		40.0
	-	-									<0.01	
Bromide (mg/L)	-	· · · · · · · · · · · · · · · · · · ·									~0.01	
Color (Color Units)	1500	80	2000	180	300	10	525	50	<5	180		0.0
Color Cilia)						 						0.00
Total Iron (mg/L)											0.705	
Nitrate + Nitrite (mg/L)												
	-											
Total Kjeldahl Nitrogen (mg/L)	 											
Di- O-thhh-2t(/1)	-											
Dis. Orthophosphåte (mg/L)												
Total Phosphorus (mg/L)												
rotar ricoprioras (mg/L)												
Dissolved Sulfate (mg/L)											12	
Bromodichloromethane (ug/L)	2100	36	3800	160		<10	160	16	8	160		0.00
Bromoform (ug/L)					<50	<10	<50	<10	<1	<30		0.0
Chloroform (ug/L)	9600 410	270	14000 840	840	1700 <50	76 <10	1900 <50	150 <10	53	850 <30		1.1
Dibromochloromethane (ug/L) TOTAL THMFP (ug/L)	12110	306	18640	1000	<50 1800	76	2060	166	2 63	1010		0.00 1.0
TOTAL TRIVIER (Ug/L)	12110	300	10040	1000	1000	10	2000	100	03	1010		1.0
Chlorophyll-a												
Pheophytin-a												
7												
Field Measurements:								•				
Temperature	21.3	20.9	20.8	21.3	22	20.7	21.2	21.1	20.9	21.3	20.5	
EC	976	152	1839	237	278	144	260	149	189	237	141	
DO	4.74	6.45	7.4	4.20	7.84	7.14	1.5	5.73	8.36	4.20	7.96	
pH Turkiditu	7.38	7.39	7.87	7.14	7.07	7.35	7.05	7.20	8.55	7.14	6.96	
Turbidity	156	60.8	324	96.5	46.9	3.4	146	24.9	0.59	96.5		

SPECIAL MULTIPURPO	SE APPL	IED RES	EARCH	TECHNO)LOGY S	TATION	(SMART	S)				
EXPERIMENT 2 - Janua	ary 21, 19	999 throug	gh Janua	ry 20, 20	100							
SURFACE WATER												
EVENT 21												
				Sa	mple dat	e: Octol	ber 27, 1	999				
	4	1					= =			Dup.		QA/QC
PARAMETER	TANK	1 TANK 2	TANK 3	IANK 4	TANK 5	IANK 6	IANK /	IANK 8	I ANK 9	I IANK 8	Supply	RPD
OC (mg/L)	172	3.3	286	6.2	19	2	26.7	2.1	1.3	2.1		0.00
DOC (mg/L)	174	2.8	263	5.4	16.8	1.9	22.6	1.8	1.2	1.8	1.1	0.00
UVA (mg/L)	8.71	0.123	11.21	0.246	1.09	0.031	1.46	0.069	0.02	0.064	0.019	7.52
pecific Absorbance Calc.	5.01	4.39	4.26	4.56	6.49	1.63	6.46	3.83	1.67	3.56	1.73	7.52
Alkalinity (mg/L)	164	51	525	61	41	49	63	50	58	51	50	1.98
.mmonia (mg/L)	0.03	0.02	0.04	0.02	0.01	0.02	0.01	0.03	<0.01	0.03		0.00
Bromide (mg/L)	3.09	0.03	5.82	0.07	0.13	<0.01	0.22	0.01	<0.01	0.01	<0.01	0.00
Color (Color Units)	1400	80	1600	100	375	10	600	35	<5	35		0.00
otal Iron (mg/L)											2.63	
Nitrate + Nitrite (mg/L)	1.5	0.25	1.7	0.4	0.39	0.11	0.28	0.15	<0.01	0.16		6.45
rotal Kjeldahl Nitrogen (mg/L)	9	0.4	14	0.7	1.8	0.2	2.4	0.3	0.1	0.4		28.57
Dis. Orthophosphate (mg/L)	0.29	0.05	0.04	0.04	0.15	0.08	0.18		<0.01	0.07	·	0.00
Total Phosphorus (mg/L)	0.86	0.19	1.2	0.24	0.42	0.14	0.72	0.17	<0.01	0.2		16.22
issolved Sulfate (mg/L)					:						16	/
Promodichloromethane (ug/L)	2300	28	3900	66	97	11	170	16				13.33
romoform (ug/L)	<357 10000	<10 ·	<500 14000	<20 370	<50 1600	<10 96	<50 2000	<10 130	<1 54	<10 110		0.00 16.67
Chloroform (ug/L) Dibromochloromethane (ug/L)	450		860			<10	<50	<10		<10		0.00
TOTAL THMFP (ug/L)	12750	218	18760	436	1697	107	2170	146		1		16.30
Chlorophyll-a												
heophytin-a												
Field Measurements:				·								
Temperature	16.9	17.1	17.2	17.2	17.6	16.8	16.9	17.2	16.6		16.9	
EC	995	160	1864	179	277	155	256	157	188	157	155	
DO pH	7.09	7.93	6.1 7.49	7.75 7.15	5.65	8.17 7.3	2.13 6.75	7.20 7.73	8.96 8.44	ļI		

SPECIAL MULTIPURPO				(16 m)		NOITATE	I (SMAR	TS)				
**EXECUTIVE IN 1 Z - Janu	ary z r, r	999 111100	gii Janua	11 y 20, 20) 			T				
SURFACE WATER					i			-				
EVENT 22	_							<u> </u>		1	<u> </u>	
LYLINIZZ			1	1		<u> </u>	<u> </u>	1000	. .	<u></u>	İ	
				Sai	npie dai	e: Nove	mber 9, 1	1999		D	10/-4	00/04
PARAMETER	TANK	1 TANK 2	TANK	TANK	TANK	TANK	TANK 7	TANKO	TANK	Dup.		QA/Q0 RPD
FAIMILILI	IANK	ITANIC	IAIVIC	ININ	IAM	IANK	IAINI	IAIVICO	IANICS	IANKO	Supply	KFD
TOC (mg/L)	172	2 4.3	274	4.9	17.9	1.9	27.2	2.9	1.4	1.6	 	17.1
Too (mg/L)	1	- 1.0		1.0	17.0	7 1.0		2.0		1.0	<u> </u>	17.17
DOC (mg/L)	159	9 4	244	4.1	16.6	1.5	22.6	2.1	1.1	1.4	1.5	6.90
	-					 			<u> </u>	<u> </u>	1	0.00
UVA (mg/L)	8.45	0.194	10.89	0.192	1.01	0.03	1.45	0.072	0.019	0.03	0.025	0.0
Specific Absorbance Calc.	5.31	4.85	4.46	4.68	6.08	2.00	6.42	3.43	1.73	2.14	1.67	6.9
Alkalinity (mg/L)											62	
Ammonia (mg/L)	0.03	0.01	0.05	0.01	0.02	0.01	<0.01	0.03	<0.01	0.01		0.0
				-								
Bromide (mg/L)											<0.01	
Color (Color Units)	1500	80	2000	80	300	5	400	40	<5	10		66.6
	1											
Total Iron (mg/L)	<u> </u>	ļ					<u> </u>				0.806	
												
Nitrate + Nitrite (mg/L)												
		·										
Total Kjeldahl Nitrogen (mg/L)	 					·						
	 											
Dis. Orthophosphate (mg/L)	-											
T-1-1 Dbb (#)	 							-				
Total Phosphorus (mg/L)	 											
Discolved Culfate (mall.)											18	
Dissolved Sulfate (mg/L)											10	
Bromodichloromethane (ug/L)	2200	44	3800	48	100	13	180	18	8	13		0.00
Bromoform (ug/L)				<10	<50	<10		<10	<1	<10		0.00
Chloroform (ug/L)	8900	290	13000	280	1500	100		160	50	95		5.1
Dibromochloromethane (ug/L)	460		900		<50	<10		<10		<10		0.00
TOTAL THMFP (ug/L)	11560	334	17700	328	1600	113	2080	178	60	108		4.5
1911211111111 (49/2)	7.000											7.0
Chlorophyll-a											1	
Pheophytin-a												
Field Measurements:		.										
Temperature	14.6	15.1	14.7	14.5	15.2	14.7	14.9	14.8	14.7	14.7	15.3	
EC	964	175	1904	185	277	139	207	174	188	139	182	
DO	6.74	6.96	9.34	9.62	6.29	8.31	2.18	8.22	10.5	8.31		
pH	7.45	7.45	8.02	7.81	7.36	7.47	7.18	7.45	8.53	7.47		
Turbidity	154	72	318	47	45	3	110	17	1	3	-	

SPECIAL MULTIPURPO	10					NOITATE	(SMAR	rs)				a T
EXPERIMENT 2 - Janu	lary Z I, I:		yn Janua 	iry 20, 20	100					1		
SURFACE WATER				<u> </u>		 						
EVENT 23							A CAMER CONTRACTOR OF THE STREET, STRE					
		1	<u> </u>	San	anlo date	· Novon	nber 23,	1000		1	L	
		- ₁	T	Jan	ipie uate	. Novell	ibei 25,	1333		Dup.	Water	QA/QC
PARAMETER	TANK	1 TANK 2	TANK 3	TANK 4	TANK 5	TANKE	TANK 7	TANK 8	TANK S			RPD
OC (mg/L)	179	3.4	267	3.4	19.3	1.8	26.0	2.7	1.3	3.0		12.50
DOC (mg/L)	169	2.7	261	3	16.6	1.8	23.2	2.2	1.1	2.7	1.7	0.00
UVA (mg/L)	8.52	0.099	11.43	0.114	1.04	0.034	1.46	0.06	0.022	0.106	0.033	6.83
	5.04	2.67	4 20	2 00	6 27	1 00	6.20	2 72	2.00	2.02	1.04	6 93
Specific Absorbance Calc.	3.04	3.67	4.38	3.80	6.27	1.89	6.29	2.73	2.00	3.93	1.94	6.83
Alkalinity (mg/L)	147	59	486	59	43	59	59	59	57	59	60	0.00
r dictanity (Hight)	 	00	100	- 00	10	00				- 00		0.00
Ammonia (mg/L)	0.03	0.03	0.07	0.02	<0.01	0.02	0.01	0.03	<0.01	0.03		0.00
Bromide (mg/L)	3.46	0.02	6.29	0.03	0.15	<0.01	0.25	0.01	0.01	0.02	<0.01	0.00
Color (Color Units)	1500	70	2000	60	400	5	400	25	<5	50		33.33
	<u> </u>										0.100	
Total Iron (mg/L)	-					-					0.486	
Nitrate + Nitrite (mg/L)	#									 		
Mitate + Mitate (mg/L)	#									 		
otal Kjeldahl Nitrogen (mg/L)	10	0.4	14	0.4	1.2	0.2	2	0.2	<0.1	0.3		28.57
Dis. Orthophosphate (mg/L)												
Total Phosphorus (mg/L)	0.88	0.22	1.1	0.23	0.34	0.22	0.7	0.23	0.01	0.22		0.00
Dissolved Sulfate (mg/L)											26	
Drown adjable serveth and (1991)	2200	23	3700	30	100	12	180	16	8	24		4.26
Bromodichloromethane (ug/L) Bromoform (ug/L)				<10		<10	<50	<10	<1	<10		0.00
Chloroform (ug/L)	9200	180	12000	210	1700	120	2000	160	57	200		10.53
Dibromochloromethane (ug/L)				<10		<10		<10		<10		0.00
TOTAL THMFP (ug/L)	11400	203	15700	240	1800	132	2180	176	66			9.84
												· · · · · · · · · · · · · · · · · · ·
Chlorophyll-a												
Pheophytin-a												
Field Measurements:	40.0	40.4	-40.0		40.0	- 40.4		40.4	~~~	40.4	40.4	
Temperature	10.3	10.1	10.2	9.9	10.8	10.1	10	10.1	9.9	10.1	12.1	
EC DO	1019 8.65	203	1894 7.42	204 10.84	285 8.05	202 10.3	259 2.32	202 9.40	193 10.73	203 10.7	215	
pH	7.5	7.34	7.75	7.5	7.11	7.16	6.87	7.15	8.3			
Turbidity	151	62.7	368	30.8	42.8	2.6	109	13.2	0.7	62.7		
					.2.0				<u> </u>	<u> </u>	1	

SPECIAL MULTIPURPO	-		2.0	44.0	116	TATION	(SMAR	S)		100		
EXPERIMENT 2 - Janua	ary 21, 18	999 throug	gn Janua	ry 20, 20	UU			.	1	1		1
SURFACE WATER									11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			
EVENT 24		1	<u> </u>		<u> </u>		<u> </u>		1	l		
man and the second seco		- p	1	Sar	nple dat	e: Decer	nber 8, 1	999		·		ļ
	<u> </u>								<u> </u>	Dup.		QA/Q
PARAMETER	IANK	1 TANK 2	TANK 3	IANK 4	IANK 5	TANK	IANK /	IANK 8	TANK 9	I ANK 4	Supply	RPD
	400		070	2.4	40.5	10	200.4	2.4	10		ļ	
TOC (mg/L)	180	3	272	3.1	18.5	1.9	26.4	2.1	1.2	3.0	<u> </u>	3.2
DOC ((1)	168	3 2.6	248	2.7	16.8	1.5	22.7	1.7	1.0	2.7	1.4	0.0
DOC (mg/L)	100	2.0	240	2.1	10.0	1.5	22.1	1.7	1.0	2.1	1.4	0.0
UVA (mg/L)	8.72	0.095	10.5	0.101	1.03	0.027	1.45	0.041	0.019	0.098	0.022	3.0
OVA (mg/L)	0.72	0.000	10.0	0.101	1.00	0.021	1.40	0.041	0.013	0.000	0.022	3.0
Specific Absorbance Calc.	5.19	3.65	4.23	3.74	6.13	1.80	6.39	2.41	1.90	3.63	1.57	3.0
operator business care.	 					1.00				1		0.0
Alkalinity (mg/L)	1										55	
									 			1
Ammonia (mg/L)	0.06	0.04	0.09	0.03	<0.01	0.02	0.04	0.04	<0.01	0.03	l	0.0
				,								
Bromide (mg/L)											<0.01	
Color (Color Units)	1750	20	2000	40	400	15	400	20	<5	40		0.0
Total Iron (mg/L)											0.645	
Nitrate + Nitrite (mg/L)												
Total Kjeldahl Nitrogen (mg/L)												
											ļ	
Dis. Orthophosphate (mg/L)											ļ	
Total Phosphorus (mg/L)										ļ	ļ	
	<u> </u>										40	
Dissolved Sulfate (mg/L)											19	
Promodichloromethers (um")	2200	22	3900	31	98	10	160	11	8	30	-	3.28
Bromodichloromethane (ug/L) Bromoform (ug/L)				<10		<1	<50	<10	<1	<10		0.0
Chloroform (ug/L)	9000	150	12000	180	1600	91	1800	110	47	180		0.0
Dibromochloromethane (ug/L)	<357	<10	760			<1	<50	<10	<1	<10		0.00
TOTAL THMFP (ug/L)	11200	172	16660	211	1698	101	1960	121	55	1		0.4
1017 tz 17 mm 1 (dg/z/	11200		.0000		1000							0.1
Chlorophyll-a												
Pheophytin-a												_
Field Measurements:												
Temperature	9.0	8.7	8.6	8.4	9.5	8.8	8.7	8.8	8.3	8.4	10.0	
EC	1024	197	1840	202	284	193	258	193	193	202	189	
DO	9.63	10.18	8.49	10.26	8.15	10.15	5.06	9.7	10.67	10.30		
pH	7.5	7.48	7.69	7.53	7.49	7.46	7.45	7.7	8.32	7.53	7.24	
Turbidity	133	34	326	21.4	46.5	2.2	93.5	5.26	0.83	21.4	2.35	Í

PECIAL MULTIPURPOSE APPLIED RESEARCH TECHNOLOGY STATION (SMARTS): EXPERIMENT 2 - January 21, 1999 through January 20, 2000 URFACE WATER **EVENT 25** Sample date: December 21, 1999 Dup. Water QA/QC PARAMETER TANK 1 TANK 2 TANK 3 TANK 4 TANK 5 TANK 6 TANK 7 TANK 8 TANK 9 TANK 4 Supply **RPD** 176 263 3.4 17.3 OC (mg/L) 3.6 1.5 26.4 1.3 3.3 2.99 OC (mg/L) 174 2.6 256 3.1 16.7 1.4 22.8 1.6 1.2 3.1 1.2 0.00 8.52 0.105 10.57 1.04 0.023 0.036 0.02 0.131 0.018 0.116 1.37 12.15 ŪVA (mg/L) 4.04 4.13 3.74 6.23 1.64 2.25 1.67 4.23 pecific Absorbance Calc. 4.90 6.01 1.50 12.15 144 425 Alkalinity (mg/L) 57 60 43 55 56 57 54 60 57 0.00 0.04 0.04 0.01 < 0.01 0.04 < 0.01 0.03 0.04 0.03 0.02 0.00 lmmonia (mg/L) 0.04 < 0.013.58 0.03 6.61 0.04 0.15 < 0.010.25 < 0.01< 0.01 0.00 romide (mg/L) Color (Color Units) 1750 50 2000 50 350 < 5 600 10 < 5 40 22.22 otal Iron (mg/L) 0.427 Nitrate + Nitrite (mg/L) 9.6 0.2 0.2 0.1 0.1 0.3 40.00 otal Kjeldahl Nitrogen (mg/L) 0.4 6.6 1.4 1.9 is. Orthophosphate (mg/L) 0.85 0.28 0.43 0.18 0.32 0.23 0.53 0.25 < 0.01 0.23 24.39 Total Phosphorus (mg/L) 14 issolved Sulfate (mg/L) romodichloromethane (ug/L) 1900 23 3100 33 84 9 150 12 7 34 2.99 <357 <10 <500 <10 <50 <1 <50 <1 <1 <10 0.00 romoform (ug/L) 7000 150 9100 170 1400 68 1600 87 48 180 5.71 Chloroform (ug/L) <357 <10 670 < 10 <50 <50 1 < 10 0.00 Dibromochloromethane (ug/L) 12870 8900 173 203 78 1750 100 56 214 TOTAL THMFP (ug/L) 1484 5.28 Chlorophyll-a heophytin-a Field Measurements: 12.1 10.4 10.6 10.4 11.3 10.4 10.4 10.4 9.8 10.4 11.1 Temperature 1006 187 1815 194 284 183 254 183 194 194 184 EC 9.24 10.27 8.6 10.15 9.25 10.40 11.88 10.15 DO 10.6 6.33 7.50 7.75 7.15 7.64 7.92 рΗ 7.30 7.33 7.40 7.64 **Turbidity** 162 44.1 308 34.3 44.7 1.99 148 4.86 0.5 34.3 2.12

SPECIAL MULTIPURPO EXPERIMENT 2 - Janu	A MEL PERSON	13,474		1		TATION	I (SMAR	rs)				
SURFACE WATER			ļ									<u></u>
EVENT 26												1
				Sa	mple da	te: Janı	uary 5, 2	000				
										Dup.	Water	
PARAMETER	TANK	1 TANK 2	TANK 3	TANK 4	TANK 5	TANK	TANK 7	TANK 8	TANK 9	TANK 6	Supply	RPD*
	100		056		47.0		05.0	4.0	4.4	10		00.04
TOC (mg/L)	169	2.3	253	3.1	17.6	1.4	25.3	1.6	1.1	1.0		33.33
DOC (mg/L)	164	1 1.9	243	2.6	16.0	1.1	21.5	1.2	1.0	1	0.9	9.52
DOC (ITIG/L)	10-	1.3	270	2.0	10.0		21.0	1.2	1.0	-	0.9	9.52
UVA (mg/L)	8.74	0.077	10.4	0.114	1.04	0.02	1.36	0.029	0.022	0.02	0.018	0.00
(g)	-						1	1				1
Specific Absorbance Calc.	5.33	4.05	4.28	4.38	6.50	1.82	6.33	2.42	2.20	2.00	2.00	9.52
Alkalinity (mg/L)							1				58	
Ammonia (mg/L)	0.04	0.04	0.22	0.04	0.01	<0.01	0.01	0.02	<0.01	0.01		N/A
	<u> </u>	ļ		ļ	ļ		ļ	ļ			10.04	
Bromide (mg/L)	-										<0.01	
Color (Color Units)	2000	50	1750	50	350	10	600	10	5	10		0.0
Color (Color Units)	2000	50	1750	30	350	10	000	10	3	10		0.0
Total Iron (mg/L)	-			 							0.472	
Total Holl (Hig/L)							 				0.112	
Nitrate + Nitrite (mg/L)	 											
							<u> </u>					
Total Kjeldahl Nitrogen (mg/L)												
Dis. Orthophosphate (mg/L)												
Total Phosphorus (mg/L)												-
	ļ				·	•						· · ·
Dissolved Sulfate (mg/L)											20	
Bromodichloromethane (ug/L)	2000	18	3500	33	96	9	170	11	8	9		0.00
Bromoform (ug/L)	<357	1	<500	<10		- 3	<50	<1		<1		0.00
Chloroform (ug/L)	7200	126	10000	180	1500	59		. 69	46	58		1.7
Dibromochloromethane (ug/L)	<357	<10	800		<50	1		2	1	1		0.00
TOTAL THMFP (ug/L)	9200	144	14300	213	1596	69	1970	82	55	68		1.46
Chlorophyll-a												
Pheophytin-a												
Field Measurements:												
Temperature	8.9	8.3	8.9	8.2	8.9	8.1	8.3	8.1	7.5	8.1	9.6	
EC	953	181	1698	187	270 9.68	180	243	180 10.50	124	180	182	
DO pH	9.9 6.12	10.76 6.10	5.2 6.5	10.90 6.9	6.66	11.2 6.71	6.88 6.74	6.90	12.1 6.94	11.2 6.71		
Turbidity	138	25.2	223	30.5	41.9	2.35		18.1	3.05	2.35		

PECIAL MULTIPURPO	SE APPL	IED RES	EARCH	TECHNO	LOGY S	TATION	(SMART	S)				
EVDEDIMENT O January	04 40	000 these	ah lanus		00	100						
EXPERIMENT 2 - Janu	ary ZI, IS	jaaa uuou g	Jii Jailua	19 20, 20	00	T.	i	1		1	i	1
URFACE WATER				ļ			·					<u> </u>
				<u> </u>	·	<u> </u>		<u> </u>	_	ļ	ļ	
EVENT 27		1	1								<u>!</u> L	
				Sar	nple dat	e: Janu	ary 19, 2	000			,	
	1								<u> </u>	Dup.	1	QA/QC
PARAMETER	TANK	1 TANK 2	TANK 3	TANK 4	TANK 5	TANK 6	TANK 7	TANK 8	TANK 9	TANK 8	Supply	RPD
	170		050		40.5		00.0		10			
OC (mg/L)	173	2.4	259	2.7	18.5	1.4	29.2	1.4	1.2	1.3		7.41
BOG (===#)	171	2.2	249	2.4	16.1	1.2	21.9	1.3	1.1	1.3	1.2	0.00
POC (mg/L)		2.2	249	2.4	10.1	1.2	21.9	1.3	1.1	1.3	1.2	0.00
UVA (mg/L)	7.54	0.082	10.4	0.093	1.02	0.02	1.29	0.029	0.02	0.028	0.021	3.51
OVA (Hg/L)	1.09	0.002	10.4	0.030	1.02	0.02	1.23	0.023	0.02	0.020	0.021	3.31
pecific Absorbance Calc.	4.41	3.73	4.18	3.88	6.34	1.67	5.89	2.23	1.82	2.15	1.75	3.51
B Salle / Local Dalloc Galo.	 	†	0	0.00	3.54		3.50		2			3.01
Alkalinity (mg/L)	146	55	402	54	43	53	53	53	52	54	38	1.87
	#											
mmonia (mg/L)	0.04	0.06	0.09	0.05	0.01	<0.01	0.01	0.03	<0.01	0.03		0.00
romide (mg/L)	3.48	0.02	6.38	0.03	0.13	<0.01	0.23	<0.01	<0.01	<0.01	<0.01	0.00
Color (Color Units)	1750	35	1400	50	350	5	800	15	5	15		0.00
	-											
otal iron (mg/L)	 										1.35	
		0.00		- 0.04	0.07	0.40	0.40	0.47	.0.04	0.47		
Nitrate + Nitrite (mg/L)	1.5	0.26	1.6	0.31	0.37	0.16	0.43	0.17	<0.01	0.17		0.00
	9.3	0.5	12	0.3	1 2	<0.1	2	0.2	<0.1	0.1		66.67
Total Kjeldahl Nitrogen (mg/L)	9.3	0.5	12	0.5	1.3	~ 0. 1		0.2	70.1	0.1		00.07
is. Orthophosphate (mg/L)	0.25	0.07	0.06	0.05	0.13	0.12	0.1	0.1	<0.1	0.11		9.52
is. Orthophosphate (mg/L)	0.20	0.07	0.00	0.00	0.10	0.12	0.1	0.1	40.1	0.11		3.02
Total Phosphorus (mg/L)	0.82	0.23	0.67	0.2	0.3	0.18	0.5	0.21	<0.1	0.19		10.00
issolved Sulfate (mg/L)											25	
Promodichloromethane (ug/L)	2200	21	3300	26	97	8	170	11	8	10		9.52
romoform (ug/L)				<10		<1		<1	<1	<1		0.00
Chloroform (ug/L)	8700	120	9800	150	1500	51	1700	73	51	68		7.09
Dibromochloromethane (ug/L)		<10	780		<50		<50	2	2	1		66.67
TOTAL THMFP (ug/L)	10900	141	13880	176	1597	60	1870	86	61	79		8.48
Chlorophyll-a					· ·							
heophytin-a	 											
Fi-LIM												
Field Measurements:	120	117	12.0	44.7	11 5	44.0	11 4	44.2	111	44.2	44 7	
Temperature	13.9 992	11.7 193	12.2 1755	11.7 193	11.5 277	11.3 189	11.4 246	11.3 190	11.1 189	11.3 190	11.7	
EC DO	9.68	11.1	5.14	11.13	10.72	11.69	6.89	11.30	12.8	11.30	163	
→ pH	7.26	7.45	7.44	7.54	7.41	7.2	7.18	7.26	7.86	7.26	103	
Turbidity	137	84.2	224	32.5	43.5	1.92	161	3.89	0.45	3.89		
· araidity	107	U-7.2		32.0	.0.0	1.02	101	3.00	3.70	3.00		

SPECIAL MULTIPURPO	SE APPL	IED RES	EARCH	TECHNO	LOGYS	TATION	(SMART	S)				
EXPERIMENT 2 - Janua	ary 21, 19	99 throug	gh Janua	ıry 20, 20	00		Program and					River E
SURFACE WATER					and the state of a spin same, a second secon					5 21ar 200		
EVENT 28	-											
	#	1	1	S	ample da	ite: Jun	e 21, 200	⊥ 00	L		1	
Analysis of the comment of the comme	#						_			Dup.	Water	QA/QC
PARAMETER	TANK 1	TANK 2	TANK 3	TANK 4	TANK 5	TANK 6	TANK 7	TANK 8	TANK 9	TANK 3	Supply	RPD
TOC (mg/L)	218	26.3	329	49.9	22.1	5.8	33.5	14.6	1.5	329		0.00
DOC (mg/L)	219	26.2	322	48.3	21.5	5.5	30.7	14.1	1.6	326		1.23
UVA (mg/L)												
Specific Absorbance Calc.												
Alkalinity (mg/L)												
Ammonia (mg/L)												
Bromide (mg/L)												
Color (Color Units)												
Total Iron (mg/L)												
Nitrate + Nitrite (mg/L)												
Total Kjeldahl Nitrogen (mg/L)				·								
Dis. Orthophosphate (mg/L)												
Total Phosphorus (mg/L)												
Dissolved Sulfate (mg/L)												
Bromodichloromethane (ug/L)												
Bromoform (ug/L)												
Chloroform (ug/L)												
Dibromochloromethane (ug/L) TOTAL THMFP (ug/L)												
Chlorophyll-a	·											
Pheophytin-a												
Field Measurements:												
Temperature	25.1	26.1	25.6	26.3	27.3	28.2	28.7	29.1	29.2	25.6		
EC	1330	382.2	2278	603	301	195	282	266	205	2278		
DO	2.54	2.7	1.58		1.55	1.7	1.3		3.4	1.58		
pH Turbidity	7.03 33.5	6.98	7.29 281	6.92 33.3	6.78 29.1	6.97 7.15	7 94.3	6.92 34.1	7.37 0.42	7.29 281		
ruibidity	55.5	02.0	201	55.5	23.1	7.13	<i>3</i> 4. 3	34.1	0.42	201		

PECIAL MULTIPURPO	SE APPLI	IED RES	EARCH	TECHNO	LOGY S	TATION	(SMART	S)_				
EXPERIMENT 2 - Janua	ani 24 40	00 throug	ah lanus	- 20 20 -	30							
SEAPERIMENT 2 - Janua	aly Z I, 19	i i i i i i i i i i i i i i i i i i i	Jii Janua	i y 20, 20	JU -	1	I	i .	l	l	l	
URFACE WATER				 							ļ	
				 		ļ						
EVENT 29			<u> </u>									
				Sam	ple date	: Septei	nber 7, 2	2000				
										Dup.		QA/QC
PARAMETER	TANK 1	TANK 2	TANK 3	TANK 4	TANK 5	TANK 6	TANK 7	TANK 8	TANK 9	TANK 4	Supply	RPD
											ļ	
OC (mg/L)	237	40.9	354	81.8	26.4	9.3	31.5	17.2	1.4	80		2.48
	0.40	40.7	070	70.0	07.0		20.5	47.4	4.0	00.0	 	4.50
DOC (mg/L)	242	40.7	370	79.6	27.3	8.8	30.5	17.1	1.3	80.8	ļ	1.50
	45.5	1.05	45	2.60	4.00	0.024	4.00	0.000	0.005	2.74		0.40
OVA (mg/L)	15.5	1.95	15	3.62	1.66	0.631	1.89	0.896	0.025	3.71		2.46
becific Absorbance Calc.	6.40	4.79	4.05	4.55	6.08	7.17	6.20	5.24	1.92	4.59	 	0.96
pecific Ausorbance Calc.	0.40	4.18	4.00	4.00	0.00	1.17	0.20	5.24	1.92	4.59		0.90
Alkalinity (mg/L)	#											
											<u> </u>	
mmonia (mg/L)	0.06	0.03	0.05	0.03	0.02	0.02	0.02	0.03	0.02	0.02		40.00
Promide (mg/L)										,		
Color (Color Units)												
				:								
otal Iron (mg/L)												
Nitrate + Nitrite (mg/L)												
otal Kjeldahl Nitrogen (mg/L)												
s. Orthophosphate (mg/L)												
Table Discrete and Constitution										-		
Total Phosphorus (mg/L)												
issolved Sulfate (mg/L)				•								
SSOIVED GUIIALE (IIIG/L)												
Bromodichloromethane (ug/L)												
romoform (ug/L)				$\longrightarrow +$								
chloroform (ug/L)												
Dibromochloromethane (ug/L)				<u> </u> ,					1			
TOTAL THMFP (ug/L)	0	0	0	0	0	0	0	0	0	0		######
Chlorophyll-a												
neophytin-a												
Field Measurements:												
Temperature	20.8	21.3	20.3	21.2	22.2	22.3	22.1	22.7	22.6	21.2		
EC	1485	449	2455	780	290	176	295	299	203	780		
ро	4.8	4.03	3.69	2.58	3.86	4.5	2.57	3.03	6.2	2.58		
ρΗ	7.21	7.21	7.45	7.26	7.17	7.17	7.6	7.23	7.54	7.26		
Furbidity	134	26.2	347	50.3	33.2	31.3	61.6	14.6	0.65	50.3		

SPECIAL MULTIPURPO	SE APPLII	ED RESE	ARCH TE	CHNOLC	GY STA	TION (SM	ARTS)		e la servicio	
EXPERIMENT 2 - Janua	ary 21, 199	9 through	January :	20, 2000						
Peat Water						· · · · · · · · · · · · · · · · · · ·				
JANUARY 1999										
			Sampl	e date: J	January 2	21, 1999	d	d		
ARAMETER	TANK 1	TANK 2	TANK 3		TANK 5		TANK 7	TANK 8		
	ļ	100	0.15		100					
OC (mg/L)	92.5	109	94.5	98	162	87.5	220	201		
DOC (mg/L)	82.1	96	85.5	94.6	14.1	11.3	27.5	27.9		
	02.1		00.0	01.0	'''	1	27.0	27.0		<u> </u>
VA (mg/L)	2.23	2.82	2.52	2.56	0.467	0.389	1.53	0.892		
	0.70	0.04	0.05	0.74	0.04	0.44	5.50	2.00		
Specific Absorbance Calc.	2.72	2.94	2.95	2.71	3.31	3.44	5.56	3.20		
Ikalinity (mg/L)	72.3	152	114	119	34.2	28.8	54.5	35.5		
, (g, <u>_</u> ,										
mmonia (mg/L)	0.98	1.1	0.87	1.1	2.8	3.4	4.5	4.1		
	<u> </u>									
Bromide (mg/L)	1.04	0.72	0.64	0.68	0.31	0.2	0.24	0.28		
olor (Color Units)	250	400	310	300	625	750	750	750		
dior (Color Offics)	230	700	310	300	023	730	700	700		
Nitrate + Nitrite (mg/L)	13	12	11	16	0.01	<0.01	0.02	<0.01		
rotal Kjeldahl Nitrogen (mg/L)	12	20	12	12	46	15	18	150		
	0.07	0.04	0.00	0.00	40 0d	<0.04	0.04	z0.04	-	
is. Orthophosphate (mg/L)	0.07	0.04	0.02	. 0.02	<0.01	<0.01	0.04	<0.01		
Total Phosphorus (mg/L)	0.94	2.9	1.3	1.9	5.1	1.9	2.4	23		
romodichloromethane (ug/L)	840	900	730	840	200	150	200	240		
Bromoform (ug/L)	<167	<250	<167	<250	<50	<50	<83	<83		
Chloroform (ug/L)	5000	5700	5000	5200	790	720	1400	1300		
ibromochloromethane (ug/L)	240	290	220	290	66		<83	94		
TOTAL THMFP (ug/L)	6080	6890	5950	6330	1056	927	1600	1634		
fold Manauromanta:	-									
eld Measurements: Temperature	10.8	10.2	9.8	9.9	10.4	10.3	10.3	10.4		
EC EC	3640	3740	4000	4800	708	578	936	1232		
0	2.2	4.0	4.1	2.1	2.5	1.8	0.9	1.1		
рН	5.8	6.2	5.9	5.9	6.1	6.1	6.1	5.9		

SPECIAL MULTIPURPO	SE APPLII	ED RESE	ARCH TE	CHNOLO	GY STA	TION (SM	IARTS)			1
EXPERIMENT 2 - Janua	ary 21, 199	9 through	January	20, 2000						
Peat Water										<u> </u>
FEBRUARY 1999										
			Samp	le date:	February	3, 1999	or Maria Control Contr	to the terminal or a second the payment control of the control of		1
PARAMETER	TANK 1	TANK 2	TANK 3	TANK 4	TANK 5	TANK 6	TANK 7	TANK 8		
TOC (mg/L)	140	118	3 121	120	32.3	24	42.5	41.5		
DOC (mg/L)	126	109	114	118	16.7	16.7	32.4	33.6		
UVA (mg/L)	4.8	4.09	3.54	4.09	0.6	0.589	1.63	1.88		
Specific Absorbance Calc.	3.81	3.75	3.11	3.47	3.59	3.53	5.03	5.60		
Alkalinity (mg/L)	147	203	169	173	41	41	90	57		
,										
Ammonia (mg/L)	2.0	1.5	1.5	1.6	2.9	3.4	4.5	4.3		
Bromide (mg/L)	0.96	0.77	0.94	0.79	0.3	0.21	0.25	0.32		
Nitrate + Nitrite (mg/L)	·									
Tatal Kialdahi Nikesaan (marii)	13	12	12	13	10	7.5	9.4	10		
Total Kjeldahl Nitrogen (mg/L)	13	12	12	13	10	7.5	3.4	10		
Dis. Orthophosphate (mg/L)										
Total Phosphorus (mg/L)	1.4	1	0.86	0.73	0.77	0.7	1.3	0.95		
Bromodichloromethane (ug/L)	1100	960	1100	940	230	180	220	280		
Bromoform (ug/L)		<250	<250	<250	<50	<50	<100	<100		
Chloroform (ug/L)	6400	5900	5700	5800	900	940	1500	1600		
Dibromochloromethane (ug/L)	320	310	350	310	79	61	<100	<110		
TOTAL THMFP (ug/L)	7820	7170	7150	7050	1209	1181	1720	1880		
ield Measurements:										
Temperature	7.9	7.3	7.6	7.3	7.3	7.4	7.5	7.8		
EC	3960	3680	4450	4790	797	604	985	1321		
00	1.1	1.1	1.3	1.4	2.8	1.1	1.0	1.5		
pH	6.0	6.2	6.0	5.9	6.3	6.1	6.1	6.0		
IOTES:									····	

PECIAL MULTIPURPO EXPERIMENT 2 - Janua						TION (SM	ARTS)		
eat Water MARCH 1999									
			Sam	ole date:	March 4	l, 1999			
ARAMETER	TANK 1	TANK 2	TANK 3	TANK 4	TANK 5	TANK 6	TANK 7	TANK 8	
DC (mg/L)	256	229	175	188	28.2	23.7	51.6	52.9	
DOC (mg/L)	233	214	161	170	21.1	20	45.6	47.1	
VA (mg/L)	12.14	9.22	6.39	7.34	1.02	0.974	3.29	2.49	
Specific Absorbance Calc.	5.21	4.31	3.97	4.32	4.83	4.87	7.21	5.29	
Akalinity (mg/L)	413	469	309	319	64	66	166	125	
mmonia (mg/L)	4.5	2.9	3.1	3	2.9	3.7	4.5	4.8	
Bromide (mg/L)	1.77	1.76	1.73	1.58	0.33	0.25	0.33	0.09	
itrate + Nitrite (mg/L)								-	
Total Kjeldahl Nitrogen (mg/L)									
Dis. Orthophosphate (mg/L)									
otal Phosphorus (mg/L)									
Bromodichloromethane (ug/L)	1800	1600	1400	1400	240	210	290	400	
romoform (ug/L)	<500	<500	<357	<357	<100	<100	<167	<167	
hloroform (ug/L)	13000	11000	8000	8600	1300	1300	2600	2500	
Dibromochloromethane (ug/L)	540	550	450	420		<100	<167	170	
TOTAL THMFP (ug/L)	15340	13150	9850	10420	1640	1510	2890	3070	
Field Measurements:	+			<u> </u>					
Temperature	10.9	10.1	10.3	9.9	9.5	9.9	10.5	10	
EC	2730	2430	3400	3290	761	619	915	1308	
DO	1.21	1.4	1.22	1.36	3.7	1.98	1.67	1.25	
рН	6.03	6.21	5.89	5.73	5.99	5.9	5.83	5.76	
NOTES:									

SPECIAL MULTIPURPO	SE APPLI	ED RESE	ARCH TE	CHNOLO	OGY STA	TION (SM	ARTS)			
EXPERIMENT 2 - Janu	ary 21, 1 99	9 through	n January	20, 2000		4				
Peat Water										
MARCH(2) 1999	<u> </u>			-						
INIANGIN(Z) 1999				<u></u>	<u> </u>		1			
DADAMETED		7		le date:			1-1111	1		. The Particular species in the security of the species of
PARAMETER	TANK 1	TANK 2	TANK 3	TANK 4	TANK 5	TANK 6	TANK 7	TANK 8	<u></u>	
TOC (mg/L)	446.8	296.2	234.4	265.6	35.6	29.1	52.7	68.4		
DOC (mg/L)	441.7	295.6	229.5	259.8	28.2	26.6	47.0	63.0		
UVA (mg/L)	18.6	14	11.3	13	1.55	1.61	3.12	3.41		
Specific Absorbance Calc.	4.21	4.74	4.92	5.00	5.50	6.05	6.64	5.41		
Alkalinity (mg/L)	845	731	502	596	91	90	228	215		
Ammonia (mg/L)	9.0	4.7	4.6	4.8	3.4	4.2	5.0	5.4		
Bromide (mg/L)	1.62	3.18	3.13	3.18	0.41	0.33	0.41	0.77		
Nitrate + Nitrite (mg/L)										
<u> </u>										
Total Kjeldahl Nitrogen (mg/L)	32	20	18	17	12	9.9	11.0	11.0		
Dis. Orthophosphate (mg/L)										
Total Phosphorus (mg/L)	2.0	1.4	1.1	0.98	1.7	1.4	3.6	1.6		
Bromodichloromethane (ug/L)	2900	2500	2300	2500	290	240	330	550		
Bromoform (ug/L)	<1250	<833	<500	<833	<83.3	<83.3	<125	<167		
Chloroform (ug/L)	20000	15000	12000	13000	2000	1900	3100	3600		
Dibromochloromethane (ug/L)	1400	1000	820	1100	96	94	140	210		
TOTAL THMFP (ug/L)	24300	18500	15120	16600	2386	2234	3570	4360		
Field Measurements:				· ·						
Temperature	11.3	9.9	9.6	9.4	11.7	12.4	12.7	12.5		
EC	3770	2110	3100	3130	790	635	924	1250		
00	<1.0	<1.0	<1.0	<1.0	3.8	2.57	1.48	1.91	- A - 44 W	
pH	6.13	6.29	6.02	6.0	6.28	6.28	6.27	6.11		
NOTES:	-									
····							_,			

PECIAL MULTIPURPO	SE APPLI	D RESE	ARCH TE	CHNOLO	GY STA	TION (SM	ARTS)			
EXPERIMENT 2 - Janu	arv 21 199	9 through	January	20 2000						
eat Water										
APRIL 1999										
			Sam	ple date:	April 28	, 1999				
PARAMETER	TANK 1	TANK 2	TANK 3	TANK 4	TANK 5		TANK 7	TANK 8		
OC (mg/L)	570	427	333	406	47.1	38	56.4	87.8		<u> </u>
		400	0.40	140	05.4	00.7	50.0	00.5	ļ	<u> </u>
DOC (mg/L)	561	426	342	416	35.1	29.7	52.8	83.5	-	<u> </u>
VA (mg/L)	26.8	26.8	15.8	16.9	2.05	1.84	3.4	4.8		
VA (mg/L)	20.0	20.0	13.0	10.9	2.00	1.04	3.4	4.0	 	<u> </u>
Specific Absorbance Calc.	4.78	6.29	4.62	4.06	5.84	6.20	6.44	5.75	 	
Ikalinity (mg/L)	985	1074	1451	1023	121	115	269	290		
mmonia (mg/L)	11.61	6.72	6.45	6.93	3.07	4.06	4.86	5.27		
	<u> </u>						2.50	1.00		
Bromide (mg/L)	5.36	5.31	5.53	5.76	0.47	0.38	0.52	1.08		
litrata i Alitrita (ma/l.)										
litrate + Nitrite (mg/L)										
Total Kjeldahl Nitrogen (mg/L)	93.4	32.4	28.9	31.3	7.5	11.9	11.6	12.7		
Dis. Orthophosphate (mg/L)										
otal Phosphorus (mg/L)	12.14	1.71	1.16	1.28	0.68	1.5	2.72	1.37		
Bromodichloromethane (ug/L)	4500	4000	3300	3900	330	280	410			
Bromoform (ug/L)		<1250	<833	<833 19000	<100	<100	<167 3300	<250 4700		
Chloroform (ug/L)	25000 1600	20000 1600	16000 1200	1200	2500 110	2200 100	180	280		
Dibromochloromethane (ug/L) TOTAL THMFP (ug/L)	31100	25600	20500	24100	2940	2580	3890	5780		ļ
. 5 // tz // mm / (ug/z/	1 31100	2000	2000		_0-0		3000	3,00		
Field Measurements:										
Temperature	15.9	14.4	14	13.4	11.9	11.8	12.7	14.3		
EC	3159	2383	3115	3280	550	454.8	702	998		
bo	<1	1.61	1.64	1.2	3.56	4.6	1.39			
pH	6.06	6.44	6.17	6.13	6.45	6.27	6.13	6.01		·
10750	-									
NOTES:	1		1	1	.]					i

SPECIAL MULTIPURPO	SE APPLI	ED RESE	ARCH TE	CHNOLC	GY STA	TION (SM	ARTS)			
EXPERIMENT 2 - Janua	ary 21, 199	99 through	January	20, 2000						
Peat Water						**************************************				
MAY 1999										
			1	1			L	İ		
DADAMETED		1		ple date:			I=44.04=	1=		
PARAMETER	TANK 1	TANK 2	TANK 3	TANK 4	IANK 5	TANK 6	TANK 7	TANK 8		
TOC (mg/L)	615	450	412	486	46.2	40	61.8	103	ļ	+
TOC (Hg/L)	1	450	412	700	40.2	1 70	01.0	103		
DOC (mg/L)	600	429	381	453	42.2	35.6	54.2	97.4		+
										+
UVA (mg/L)	30.2		20.4	28.1	2.27	1.93	3.7	5.36		
										1
Specific Absorbance Calc.	5.03		5.35	6.20	5.38	5.42	6.83	5.50		
Alkalinity (mg/L)	1040	1080	910	1040	147	140	305	357		
Ammonia (mg/L)	16.9	9.84	9.07	10.02	3.23	4.69	5.97	6.31		<u> </u>
								1.00		-
Bromide (mg/L)	7.45	5.09	5.83	6.72	0.42	0.34	0.5	1.28		-
API API 21			-							
Nitrate + Nitrite (mg/L)				<u> </u>		<u> </u>				<u> </u>
Total Kieldahl Nitragan (mg/l)	53	34	28	35	7.2	7.4	9.7	13.0		-
Total Kjeldahl Nitrogen (mg/L)	33	34	20	30	1.2	7.4	9.1	13.0		
Dis. Orthophosphate (mg/L)									<u> </u>	
Dis. Orthophosphate (mg/L)										
Total Phosphorus (mg/L)	2.2	1.5	1.2	1.4	0.97	0.71	1.7	1.2		
,										
Bromodichloromethane (ug/L)	5000	3700	4000	4600	330	270	400	940		<u> </u>
Bromoform (ug/L)	<1250	<1250	<833	<1250	<100	<100	<167	<250		
Chloroform (ug/L)	29000	22000	19000	23000	3300	2800	4100	6000		
Dibromochloromethane (ug/L)	<1250	<1250	<833	<1250	<100	<100	<167	<250		
TOTAL THMFP (ug/L)	34000	25700	23000	27600	3630	3070	4500	6940		
ield Measurements:										
Temperature	20.5	20.6		20.9	20.3	21.3	22.5	22.1		
EC	3310	2620		3360	676	673	990	1265		ļ
00	<1		<1	1.02	4.77	3.61	1.57	1.85		
pH	6.25	6.28	6.07	6.13	6.26	6.22	6.11	6.06		ļ
IOTEO.										:
IOTES:										1

TOTAL THMFP (ug/L) 32500 23800 22900 24300 3700 2840 4090 6220 Field Measurements:	SPECIAL MULTIPURPO EXPERIMENT 2 - Janu				and the state of		TION (SM	ARTS)	En Classical Control of the Control		All properties of the second s
Sample date: June 23, 1999	Post Water	<u> </u>					ļ	ļ		ļ	
Sample date: June 23, 1999		++									
PARAMETER	TOME 1999	-	1	1	L	<u> </u>	L		<u> </u>	<u> </u>	<u> </u>
DOC (mg/L)			- 					7	T		
DOC (mg/L)	PARAMETER	TANK 1	TANK 2	TANK 3	TANK 4	TANK 5	TANK 6	TANK 7	TANK 8	ļ	
DOC (mg/L)		571	121	202	143	52.2	11 2	66 1	105		ļ
DVA (mg/L) 35.9 24.2 23.6 30.5 2.63 2.29 4.28 6.05	OC (mg/L)	37	421	393	443	52.5	41.2	00.1	103		
DVA (mg/L) 35.9 24.2 23.6 30.5 2.63 2.29 4.28 6.05	DOC (mg/L)	544	413	380	411	45.3	36.4	55.8	106.0		
Specific Absorbance Calc.	Too (mg/s)	544	710	- 550	1	+	- 00.4	30.0	100.0		
Specific Absorbance Calc.	JVA (mg/L)	35.9	24.2	23.5	30.5	2.63	2.29	4.28	6.05		
Nikalinity (mg/L)	T										
Ammonia (mg/L)	Specific Absorbance Calc.	6.60	5.86	6.18	7.42	5.81	6.29	7.67	5.71		
Ammonia (mg/L)											
Bromide (mg/L)	Alkalinity (mg/L)	1000	978	915	1074	172	165	313	384		
Bromide (mg/L)											
Nitrate + Nitrite (mg/L)	Ammonia (mg/L)	21.0	12	11	12	3.7	4.8	7.1	7.50		
Nitrate + Nitrite (mg/L)		0.74		0.70	7.04	2.51		0.00	1.00		
Total Kjeldahl Nitrogen (mg/L) 54 32 28 31 7.8 8 12 15.0 Dis. Orthophosphate (mg/L) 2.0 1.2 1.3 1.4 1.2 0.96 2.6 1.2 Bromodichloromethane (ug/L) 5500 3800 3900 4300 300 240 390 920 Bromoform (ug/L) <1250 <1250 <833 <1250 <125 <100 <167 <250 Chloroform (ug/L) 27000 20000 19000 20000 3400 2600 3700 5300 Dibromochloromethane (ug/L) <1250 <1250 <833 <1250 <125 <100 <167 <250 TOTAL THMFP (ug/L) 32500 23800 22900 24300 3700 2840 4090 6220 Field Measurements: Temperature 22.4 23.1 23.4 23.0 21.3 23.6 23.9 23.2 EC 3260 2530 3140 3300 714 658 1021 1291 DO <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Bromide (mg/L)	9.71	6.64	6.78	7.61	0.51	0.4	0.66	1.63		ļ
Total Kjeldahl Nitrogen (mg/L) 54 32 28 31 7.8 8 12 15.0 Dis. Orthophosphate (mg/L) 2.0 1.2 1.3 1.4 1.2 0.96 2.6 1.2 Bromodichloromethane (ug/L) 5500 3800 3900 4300 300 240 390 920 Bromoform (ug/L) <1250 <1250 <833 <1250 <125 <100 <167 <250 Chloroform (ug/L) 27000 20000 19000 20000 3400 2600 3700 5300 Dibromochloromethane (ug/L) <1250 <1250 <833 <1250 <125 <100 <167 <250 TOTAL THMFP (ug/L) 32500 23800 22900 24300 3700 2840 4090 6220 Field Measurements: Temperature 22.4 23.1 23.4 23.0 21.3 23.6 23.9 23.2 EC 3260 2530 3140 3300 714 658 1021 1291 DO <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Physics A No. 24 (1997)				-						
Dis. Orthophosphate (mg/L) Total Phosphorus (mg/L) Bromodichloromethane (ug/L) Storm (ug/L) Total Phosphorus (mg/L) Storm (ug/L) Total Phosphorus (mg/L) Storm (ug/L) itrate + Nitrite (mg/L)					 			-		 	
Dis. Orthophosphate (mg/L) Total Phosphorus (mg/L) Bromodichloromethane (ug/L) Storm (ug/L) Total Phosphorus (mg/L) Storm (ug/L) Total Phosphorus (mg/L) Storm (ug/L) otal Kieldahl Nitragan (mg/l.)	5.4	32	28	21	7.8	Ω	12	15.0		-	
Total Phosphorus (mg/L) 2.0 1.2 1.3 1.4 1.2 0.96 2.6 1.2 Bromodichloromethane (ug/L) 5500 3800 3900 4300 300 240 390 920 Bromoform (ug/L) <1250	otal Kjeldalli Nidogeli (Hg/L)	34	32	20	31	7.0	0	12	13.0	·	
Total Phosphorus (mg/L) 2.0 1.2 1.3 1.4 1.2 0.96 2.6 1.2 Bromodichloromethane (ug/L) 5500 3800 3900 4300 300 240 390 920 Bromoform (ug/L) <1250	Dis Orthophosphate (mg/l.)										
Bromodichloromethane (ug/L) 5500 3800 3900 4300 300 240 390 920 Bromoform (ug/L) <1250 <1250 <833 <1250 <125 <100 <167 <250 Chloroform (ug/L) 27000 20000 19000 20000 3400 2600 3700 5300 Dibromochloromethane (ug/L) <1250 <1250 <833 <1250 <125 <100 <167 <250 TOTAL THMFP (ug/L) 32500 23800 22900 24300 3700 2840 4090 6220 Field Measurements: Temperature 22.4 23.1 23.4 23.0 21.3 23.6 23.9 23.2 EC 3260 2530 3140 3300 714 658 1021 1291 DO <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Die: Granopriespriete (mg/2)	 									
Bromodichloromethane (ug/L) 5500 3800 3900 4300 300 240 390 920 Bromoform (ug/L) <1250 <1250 <833 <1250 <125 <100 <167 <250 Chloroform (ug/L) 27000 20000 19000 20000 3400 2600 3700 5300 Dibromochloromethane (ug/L) <1250 <1250 <833 <1250 <125 <100 <167 <250 TOTAL THMFP (ug/L) 32500 23800 22900 24300 3700 2840 4090 6220 Field Measurements: Temperature 22.4 23.1 23.4 23.0 21.3 23.6 23.9 23.2 EC 3260 2530 3140 3300 714 658 1021 1291 DO <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Total Phosphorus (mg/L)	2.0	1.2	1.3	1.4	1.2	0.96	2.6	1.2		
Stromoform (ug/L)											
Chloroform (ug/L)	Bromodichloromethane (ug/L)	5500	3800	3900	4300	300	240	390	920		
Dibromochloromethane (ug/L) <1250 <1250 <833 <1250 <125 <100 <167 <250 TOTAL THMFP (ug/L) 32500 23800 22900 24300 3700 2840 4090 6220 Field Measurements: Temperature 22.4 23.1 23.4 23.0 21.3 23.6 23.9 23.2 EC 3260 2530 3140 3300 714 658 1021 1291 DO <1	Bromoform (ug/L)	<1250	<1250	<833	<1250	<125	<100				
TOTAL THMFP (ug/L) 32500 23800 22900 24300 3700 2840 4090 6220 Field Measurements: Temperature 22.4 23.1 23.4 23.0 21.3 23.6 23.9 23.2 EC 3260 2530 3140 3300 714 658 1021 1291 DO <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Chloroform (ug/L)	27000							5300		
Field Measurements: Temperature 22.4 23.1 23.4 23.0 21.3 23.6 23.9 23.2 EC 3260 2530 3140 3300 714 658 1021 1291 DO <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Dibromochloromethane (ug/L)										
Temperature 22.4 23.1 23.4 23.0 21.3 23.6 23.9 23.2 EC 3260 2530 3140 3300 714 658 1021 1291 DO <1	TOTAL THMFP (ug/L)	32500	23800	22900	24300	3700	2840	4090	6220		
Temperature 22.4 23.1 23.4 23.0 21.3 23.6 23.9 23.2 EC 3260 2530 3140 3300 714 658 1021 1291 DO <1											
EC 3260 2530 3140 3300 714 658 1021 1291 DO <1			- 00.4	- 60 1		04.0	00.0	00.0	60.0	<u> </u>	
DO											
pH 6.29 6.35 6.18 6.21 6.38 6.21 6.04 6.04											·
NOTES:	рп	0.29	0.33	0.10	0.21	0.30	0.21	0.04	0.04		
	NOTES:	-									

SPECIAL MULTIPURPO	SE APPLI	ED RESE	ARCH TE	CHNOLO	GY STA	TION (SM	ARTS)		en en en en en en en en en en en en en e
EXPERIMENT 2 - Janu	ary 21, 199	9 through	January	20, 2000					
Peat Water									
July 1999									
			Sam	ple date:	July 21	, 1999			
PARAMETER	TANK 1	TANK 2		TANK 4	TANK 5	TANK 6	TANK 7	TANK 8	
TOC (mg/L)	600	410	383	386	53.9	44.2	63.3	44.2	
DOC (mg/L)	590	392	374	368	46.8	40.1	57.8	99.5	
UVA (mg/L)	36.3	25.5	22.5	23.5	2.92	2.49	3.46	6.64	
Specific Absorbance Calc.	6.15	6.51	6.02	6.39	6.24	6.21	5.99	6.67	
Alkalinity (mg/L)	922	1007	845	937	184	181	326	380	
Ammonia (mg/L)	25	17	12	15	3.9	5.4	7.8	7.90	
Bromide (mg/L)	10.2	7.09	6.92	7.49	0.59	0.38	0.71	1.8	
Nitrate + Nitrite (mg/L)									
Total Kjeldahl Nitrogen (mg/L)	54	36	31	36	8.2	10	12	13.0	
Dis. Orthophosphate (mg/L)									
Total Phosphorus (mg/L)	2.0	1.5	1.2	1.3	1.2	1.4	1.7	1.1	
Bromodichloromethane (ug/L)	6200	4300	4100	4200	360	300	490	1100	
Bromoform (ug/L)	<2500	<1250		<833	<125	<125	<167	<250	
Chloroform (ug/L)	24000	18000	16000	17000		2500	3500	5400	
Dibromochloromethane (ug/L)	<2500	<1250	1000		<125	<125	<167	270	
TOTAL THMFP (ug/L)	30200	22300	21100	22300	3660	2800	3990	6770	
Field Measurements:									
Temperature	18.8	17.7	19.2	18.7	19.8	18.8	20.6	20.9	
EC	3260	2320	3010	2880	663	675	1021	1249	
DO							<1	<1	
pH	6.24	6.33	6.19	6.15	6.27	6.27	6.09	6.02	
NOTES:									

SPECIAL MULTIPURPOSE APPLIED RESEARCH TECHNOLOGY STATION (SMARTS) EXPERIMENT 2 - January 21, 1999 through January 20, 2000 eat Water OCTOBER 1999 Sample date: October 27, 1999 ARAMETER TANK 1 TANK 2 TANK 3 TANK 4 TANK 5 TANK 6 TANK 7 TANK 8 OC (mg/L) 548 315 379 312 52 43.8 51 72.2 532 312 380 37.9 47.4 68.9 DOC (mg/L) 301 35.9 28.66 18.08 20.24 17.52 2.58 2.46 3.99 4.32 VA (mg/L) 5.39 5.79 5.33 5.82 6.81 6.85 8.42 6.27 Specific Absorbance Calc. 325 180 194 348 Ikalinity (mg/L) 920 864 811 856 30 23 19 23 4.1 5 9.3 8.00 mmonia (mg/L) 11.8 6.28 8.82 7.14 0.47 0.45 0.84 1.41 Bromide (mg/L) 0.2 0.48 0.14 0.02 0.03 0.83 0.18 < 0.01 litrate + Nitrite (mg/L) 55 43 40 38 9.7 12 14 14.0 Total Kjeldahl Nitrogen (mg/L) is. Orthophosphate (mg/L) 1.4 0.6 0.9 0.63 0.87 0.53 1.1 0.68 2.5 2.1 2.3 2.1 2.2 2.2 3 1.6 otal Phosphorus (mg/L) 4400 5900 4600 360 340 640 1000 7800 Bromodichloromethane (ug/L) <1250 <833 <833 <833 <100 <100 <167 <167 romoform (ug/L) hloroform (ug/L) 30000 17000 20000 16000 3200 2800 3400 4200 1800 1100 1600 1200 < 100 <100 <167 220 Dibromochloromethane (ug/L) 5420 39600 22500 27500 21800 3560 3140 4040 TOTAL THMFP (ug/L) Field Measurements: 14.4 14.9 15.2 15.9 15.5 14.4 14.5 16 Temperature 1046 EC 2925 2138 2672 2344 631 648 1096 Ĭ 6.32 6.23 6.18 6.05 6.17 5.89 6.31

OTES:

SPECIAL MULTIPURPO EXPERIMENT 2 - January							ARTS)			
Peat Water										
JANUARY 2000				ļ						
		L	L	L	. L		1	1		
	70000	TANK 6	· · · · · · · · · · · · · · · · · · ·		anuary		1-410/-	TAAU.		
PARAMETER	TANK 1	TANK 2	TANK 3	IANK 4	TANK 5	TANK 6	TANK 7	TANK 8		
TOC (mg/L)	462	276	335	265	39	33.8	47.6	83.4		
100 (1119/2)	702	210	333	200	33	33.0	77.0	00.4		
DOC (mg/L)	460	275	332	251	35	30.6	42.2	77.5		-
		=:0								1
UVA (mg/L)	26.6	17.7	20.6	17.4	2.88	2.36	4.47	5.32		†
Specific Absorbance Calc.	5.78	6.44	6.20	6.93	8.23	7.71	10.59	6.86		
Alkalinity (mg/L)	928	904	904	952	208	202	363	429		
Ammonia (mg/L)	25	19	17	19	3.1	3.6	6.8	7.3		
Bromide (mg/L)	10.3	6.06	9.33	7.1	0.53	0.4	0.83	1.78		<u> </u>
	2.00		0.00	0.01		0.10	0.00	.0.04		ļ
Nitrate + Nitrite (mg/L)	0.32	0.09	0.02	0.04	0.7	0.46	0.39	<0.01	·····	<u> </u>
P-1-112'-11-11-11-11	50	20	20	25	0.0	77	40	40		
Total Kjeldahl Nitrogen (mg/L)	52	38	38	35	8.3	7.7	12	.13		
Die Orthophophoto (mg/L)	1.3	0.73	0.93	0.57	0.7	0.66	1.3	0.84		
Dis. Orthophosphate (mg/L)	1.3	0.73	0.93	0.57	0.7	0.00	1.3	0.04		
Total Phosphorus (mg/L)	2.1	1.7	1.4	1.5	1.6	1.2	2.7	1.5		
rotal Phosphorus (mg/L)	2.1	1.7	1,4	1.5	1.0	1.4	2.1	1.5		
Bromodichloromethane (ug/L)	6100	3700	5100	4100	350	280	570	1100		
Bromoform (ug/L)		<833					<125	<250		
Chloroform (ug/L)	22000	14000	15000	12000	2700	2300	2900	4200		
Dibromochloromethane (ug/L)		<833	1300	1000				<250		
TOTAL THMFP (ug/L)	28100	17700	21400	17100	3050	2580	3470	5300	·····	
ield Measurements:										
Temperature	11.4	11.2	10.8	10.7	10.8	10.9	10.6	10.6		
EC	2974	2198	3292	2881	689	620	1036	1294		
Н										
IOTES:						I				

PECIAL MULTIPURPOSE A	PPLIED RI	ESEARCI	TECHN	OLOGY (STATION	(SMART	S)			
EXPERIMENT 2 - January 2	1, 1999 thr	ough Jani	uary 20, 2	000						
eat Water										
SEPTEMBER 2000										
	nga nganggan sa Pala sa mang sagan ang paggan ang Palanggan san	1	Sample	date: Se	ntembe	r 7 2000	L	<u> </u>		
ARAMETER	TANK 1	TANK 2				TANK 6	TANK 7	TANK 8	Dup. Tank 4	QA/QC RPD
OC (mg/L)	493	249	393	270	41.6	41.1	57.2	67.9	294	8.51
DOC (mg/L)	516	250	412	265	41.7	38.4	52.5	60.0	284	6.92
DOC (mg/L)	310	250	412	200	41.7	30.4	32.3	00.0	204	0.92
VA (mg/L)	22.6	13.6	19.8	18.2	2.96	1.97	2.82	3.25	18.8	3.24
						,				
Specific Absorbance Calc.	4.38	5.44	4.81	6.87	7.10	5.13	5.37	5.42	6.62	3.68
Alkalinity (mg/L)	-						· · · · · · · · · · · · · · · · · · ·			
Alkalinity (mg/L)										
mmonia (mg/L)	33	26	21	24	4.2	5.2	9.8	8.9	24	0.00
Bromide (mg/L)										
24 - 4 - 4 - A 12 - 4 A 12 - 12 A 12										
itrate + Nitrite (mg/L)										
tal Kjeldahl Nitrogen (mg/L)										
Dis. Orthophosphate (mg/L)			·							
otal Phosphorus (mg/L)										
Bromodichloromethane (ug/L)										
romoform (ug/L)										
hloroform (ug/L)										
Dibromochloromethane (ug/L)										
TOTAL THMFP (ug/L)	0	0	0	0	0	0	0	0	0	#DIV/0!
Field Measurements:										
Temperature	20	20.7	21.1	19.6	19.4	19.6	19.1	19.8	19.6	
EC	2895	1702	1332	2226	603	636	1006	861	2226	
pH .	6.31	6.27	6.32	6.38	6.18	6.31	6.16	6.05	6.38	
OTES:										